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ABSTRACT 

Nearshore bridges may have impacts on ocean 
environments. This paper introduced how to investigate  
suspended sediment changes induced by a bay-bridge 
using remote sensing method. Hangzhou Bay Bridge 
(HBB) crossing Hangzhou Bay, in China, was taken as 
example. The spectral features of water were analyzed, 
and unsupervised classification of water quality was 
conducted, suspended sediment concentration (SSC) was 
inversed from Landsat TM data (30m spatial resolution) 
using a new established model. Those three aspects 
together revealed details of SSC changes induced by 
HBB. When water turbidity was low upstream, SSC 
increased 3% - 60% (8.4 mg·l-1-176.29 mg·l-1) 
downstream. In general, the more turbid the water in 
upstream, the less SSC increases amplitude downstream. 
If water turbidity was high (> 350 mg·l-1) upstream, 
SSC decrease can be observed in the range of 300 meters 
or further downstream from the bridge. It decreases 
nearly 2% -17.5% (12.6 mg·l-1-62.98 mg·l-1). This 
study shows that Landsat TM data and corresponding 
methods can display the changing patterns of SSC 
induced by a nearshore bridge in coastal waters.  
Keywords: Remote sensing; Changes in suspended 
sediment; Influence of bridge; SS-CT 

 

1. INTRODUCTION 

Suspended sediment is one of the key factors of the 
ocean environment, it is a significant carrier of carbon, 
nutrients, pollutants and other materials [1-4]. The 
sediments of Hangzhou Bay are partly from the Yangtze 
River, which is the fourth largest sediment load river in 
the world with approximately more than 400 million tons 
per year [5, 6]. Suspended sediment influences the 
ecology, geomorphology evolution and water quality of 
Hangzhou Bay. Monitoring the behavior of suspended 
sediment is of great interest and importance.  

Satellite data were used to track the suspended 
sediment concentration (SSC) in the coastal waters of 
China in the past [7, 8], and recently MODIS data were 

used to analyze the northward drift of SSC in the 
Yangtze estuary in spring [9]. The spatial resolution of 
most satellite data (such as SeaWiFS, MODIS, MERIS 
and GOCI) is relatively low, of the order of a few 
hundred meters. Such data are too sparse to estimate the 
effects of bridges on the local ocean sedimentary 
environment. Therefore, remote sensing data with higher 
spatial resolution are needed. Till now, the method of 
remote sensing of SSC variation induced by crossing bay 
bridge is still under developing. 

 In this paper, we analyzed the spectral features of 
turbid waters, conducted unsupervised classification 
using Landsat Thematic Mapper (TM) data and 
estimated the SSC around the bridge from TM images. 
We aim to determine how to apply satellite data to 
observe variation of suspended sediment concentration 
patterns in the vicinity of Hangzhou Bay Bridge (HBB) 
in the Hangzhou Bay, East China Sea.  

2. DATA AND METHOD 

2.1. Study Area and Hangzhou Bay Bridge 

Hangzhou Bay is located in the East China Sea, 
between 29°-32° N and 120°-123° E (Fig.1 a, b) with an 
area of approximately 8500 km2. Its average depth at low 
tide is 8-10 m [10-12].  

The Hangzhou Bay Bridge (Fig. 1c and d) is a large 
bridge with a length of about 36 km spaning the main 
channel of the bay. It was built in 2003 and has been 
operating since 2007.  

2.2. In Situ Field Data Collection  

In order to determine the spectral feature of the SSC 
in Hangzhou Bay, we analyzed in situ spectral data. The 
survey was conducted in Hangzhou Bay (yellow square 
in Fig. 1, b) in 2009 and 2014 using an ISI921VF visible, 
near-infrared (NIR), high spectral radiometer with 
380-1080 nm spectral range. The remote sensing 
reflectance (Rrs) together with SSC were synchronously 
measured.  
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Figure 1. Location of the study area (a: Location of 
Hangzhou Bay; b: Bathymetry Information of 

Hangzhou Bay; c: False Color Image Composited 
from TM Bands 5, 4 and 3; Red Curve in c: HBB; 

d: Photo of HBB) 

2.3. Analysis of Landsat-5 TM Data  

Landsat-5 TM images were chosen to analyze the 
changes in SSC. The wavelength used in the TM sensor 
was from 0.45 µm to 12.50 µm and seven spectral bands 
were defined. The spatial resolution is 30 m for the 
visible, NIR bands and short wave infrared bands, 120 m 
for the thermal infrared band [13]. Seven Landsat- 5 TM 
images in clear sky were acquired at around 10:15 (a.m.) 
on Jul. 2, 2007; Jul. 28, 2007; Mar. 24, 2008; May 11, 
2008; Jul. 17, 2009; Nov. 9, 2010; Jul. 23, 2011, 
respectively. 

In this paper, we conducted the atmospheric 
correction by using a dark pixel subtraction method 
[14-16]. To convert the digital data to radiance at the 
sensor, the calibration was carried out using the formula 
of Onderka and Pekárová [17] and listed in Eq. (1): 

λλλλ DNGainBiasL ×+= 	   	              (1) 

Lλ: the radiance in units of W/(m2 sr µm),  

Biasλ and Gainλ: the bias [Wm-2 sr-1 µm-1] and gains 
[Wm-2 sr-1 µm-1] for the λ wavelength band,  

DNλ : the digital number [18, 17].  

In order to investigate the difference in water quality 
near the bridge, unsupervised classification and spectral 
profile curve analysis were performed. In this paper, we 
adopted the ISODATA (Iterative Self-Organizing Data 
Analysis Techniques Algorithm) to perform the 
unsupervised classification [19-21].  

To clearly analysis the variation of SSC induced by 
the HBB, SSC was retrieved from Landsat-5 TM data 
using a new established model. Furthermore, SSC 
comparative analysis was conducted from sampling 
paired sub-areas and paired points on opposite side of the 
bridge.  

3. RESULTS  

3.1. Water Spectral Profile Curves and Classes on 
Two Sides of The Bridge 

Two-dimensional spectral feature spaces have been 
retrieved from the TM image on July 28, 2007 (bands 1 
and 3, 1 and 4, 2 and 4 were taken as examples). The 
candle light shaped part in white circles represents sea 
water. The pixels of the same water quality have the 
same pixel value in every band and cluster together in 
the same place (Fig. 2(a-c)). The different positions in 
the white circled areas represent different levels of water 
quality.  

   
Figure 2. (a-c) Two-Dimensional Spectral Feature Space 

of Every Two Bands (Arabic Numerals in Each 
Block: Band Number that Comprise the Spectral 

Feature Space; First Band Number: x Axis; Second 
Number: y Axis). (d) Results of Water 

Unsupervised Classification Derived from 
Landsat-5 TM Images (Black Dotted Line: HBB)  

 

Based on the spectral feature space from the Landsat 
TM multispectral image, sea water of study area can be 
separated into 20 classes (Fig.2d). An obvious difference 
in water class was observed on the opposite sides of the 
bridge, which has been highlighted by red triangles in 
Fig. 2(d).  

Different patterns of water classes, indicating 
different optical characteristics. In situ data got from 
Hangzhou Bay was sampled to analyze the relationship 
between SSC and each spectral band. As was shown in 



Fig.3 that two reflectance peaks were found in the 
measurement of spectral curves, with the first being 
around 700 nm, and the second being around 800 nm. 
The intensity of two peaks is close. The reflectance in the 
red and NIR bands increases with the increase of SSC.  

 

 
Figure 3. Spectral Reflectance Curves of Sampling 

Points in Hangzhou Bay 

 

Spectral curves and values were obviously different 
on opposite sides of HBB (Fig. 4(A1-C1)), this is 
especially the case in the red and NIR bands (red dotted 
line frames in Fig. 4(A1-C1)). The water leaving 
reflectance on the downstream side of the HBB changed, 
becoming larger or smaller than those on the upstream 
side. 

3.2 Estimation of SSC Model 

The calibration data set contained 23 water samples, 
with SSC values ranging from 263.6 to 473.2 mg·l-1 with 
a mean value of 361.52 mg·l-1. Water spectral analysis 
and correlation analysis were carried out to determine the 
relationship between the SSC and reflectance as a 
function of wavelength. The estimation model of SSC 
was built based on regression Eq. (2): 

ε++= bxiaiSSC *               (2) 

                                                   
Where x is the calibrated radiance in a corresponding 

band, ai are the coefficients, b is the intercept (constant) 

of a linear regression, ε is a random error, i can be one 
for a single band or more for a combination (multiple 
regression). 

The linear correlation between SSC and Rrs at 
different wavelengths was analyzed in Tab. 4. Near 
infrared band indicates the highest correlation between 
SSC and Rrs compared with blue, green and red bands, 
with the correlation coefficient R 0.841 (averaged from 

765nm and 865nm). The red band presents a secondary 
peak in the correlation with the SSC, with R 0.713. 
Therefore, the near infrared band (TM4) and the red 
band (TM3) can be adopted to establish estimation 
model of SSC. The new model is named as SS-CT (Eq. 
(3)): 
                                  

962.251)4*673.03*327.0(*219.6 −+= LLSSC   (3)  

Where SSC is the suspended sediment concentration 
(mg·l-1), L3, L4 are the calibrated radiance in the red 
band (TM3) and near-infrared band (TM4). The 
factoring of Eq. (3) represents a weighted sum of bands 
combination with the red band weight of 0.327 and 
near-infrared band weight of 0.673. This combination 
shows the best correlation (R 0.956 and P<0.005) with 
SSC than other weight assignment and was confirmed by 
an independent iterative weight analysis among 1000 
weight assignments. 

The calculation were performed with software ENVI 
4.5 [22]. 

 
Table 1. Eigenvalues of linear regression between SSC 
and the Rrs at different wavelengths 

Wavelength 
a 

(nm) 

SSC 

R  R
2

 R
2

 
Sig  
(P) 

F  

443B 0.643 0.413 0.364 0.013 8.439 
510 B 0.556 0.310 0.252 0.039 5.379 
555 G 0.552 0.304 0.246 0.041 5.247 
660 G 0.707 0.499 0.452 0.005 11.975 
670 R 0.710 0.505 0.463 0.004 12.226 
680 R 0.716 0.513 0.472 0.004 12.644 
765 N 0.834 0.696 0.671 0.000 27.503 
865 N 0.847 0.717 0.693 0.000 30.39 

a B-Blue, G-Green, R-Red, N-Near infrared 

3.3 SS-CT Retrieved SSC  

3.3.1 Variation of SSC in The Vicinity of The Bridge 
Distributions of the SSC (Fig. 4) in the research area 

have been retrieved from TM images (taken on July 28, 
2007; July 17, 2009; July 23, 2011 as examples). In this 
paper, two sides of the bridge, the upstream (UP) and 
downstream (DW) were defined according to the pier 
induced flow (pier wake) and the position relative to the 



bridge. The pier induced flow can be interpreted from 
Landsat-5 TM enhanced color images (Fig. 4(D)). We 
define the pier wake side as downstream, and the 
opposite side of the bridge as upstream. 

The SSC on the northwest and south of the bridge 
was higher than that near the center of the bridge (Fig. 
4(A2-C2)). Along HBB from north to south, SSC 
changed obviously, with the lowest in the middle the 
highest in the south, and the moderate concentrations in 
the north. The maximum SSC in study area was nearly 
750 mg·l-1 with the average SSC being around 300 mg·l-1. 
These levels showed that water in the research area is 
high turbidity. In addition, distinctly different 
distributions of SSC were observed on opposite sides of 
the bridge.  

Comparisons between in situ SSC and SS-CT values 
showed a close agreement (Fig. 5a) with a highly 
significant linear relationship with an R of 0.986, R2 971, 
F 1253.819, P <0.005. The SS-CT mode is suitable for 
single image comparison of SSC between two sides of 
the bridge. 

 

 
 
Figure 4. Comparison of Spectral Profile Curves 

Between Paired Sampling Points (a1-a4, b1-b4, c1-c4: 
Sampling Points in A-C and Corresponding Spectral 
Profile Curves in A-C1; D: Bridge Pier Wake.) Surface 
SSC Derived from Landsat TM Images (A2-C2: SSC on 
July 23, 2011, July 17, 2009 and July 28, 2007; Black 
Dotted Line: HBB; A and B: Histogram of Each 
Corresponding Sub- Area in Sub-figure b.) 
 

 

 

Figure 5. Comparison of the measured SSC and 
estimated SSC from SS-CT model (a). (b) Regression 
analysis of upstream water SSC and downstream SSC 
sampled 300 m downstream(c). (c) Regression analysis 
of upstream water SSC and downstream SSC increase 
amplitude in the range 300 m downstream. (d) Scatter 
plot for upstream water SSC and downstream water SSC 
variation; the points of unchanged SSC distribute on 
horizontal line, positive value denotes SSC increase and 
negative value denotes SSC decrease.  
 

3.3.2 SSC on Two Sides of The Bridge 

The SSC of upstream sub-area A was clearly lower 
than that of downstream sub-area B (Fig. 6, Tab. 2), with 
the mean values 177 mgl-1 and 253 mg·l-1 respectively. 
The same result was also observed across sampled pairs I 
and J, with the mean SSC values of 351 mg·l-1 and 433 
mg·l-1. The SSC increase amplitude were 76 mg·l-1 and 82 
mg·l-1 from upstream to downstream. However, SSC 
decline phenomenon was observed in some paired 
sub-areas. For example, the decrease in amplitude of the 
SSC across upstream samples D, F and H compared to 
their downstream pairs C, E and G were 6 mg·l-1, 43 mg/l 
and 35 mg·l-1, respectively (Tab. 2). 

 



 

	  
 

Figure 6. Comparisons of the SSC in the sampling 
sub-areas between upstream and downstream. (a) 
Inversed SSC map. Red boxes: sampling sub-areas. (A-B 
in red boxes) Upstream sampled sub-area and 
downstream sampled sub-area. (A-B in right hand side) 
Histogram of each corresponding sampling area. 

 
 

Table 2.  Basic statistics of SSC (mg·l-1) in sampling sub-areas (Fig. 5) 
Sub-area Min Max Mean Variation Std dev 

A 154 213 177 (UP)   11.48 

B 204 284 253 (DW) 76  42.9% 14.27 

C 225 322 286 (UP)   15.94 

D 238 309 280 (DW) 6 2.1% 9.13 

E 381 427 404 (UP)   7.5 

F 322 406 361 (DW) 43  10.6% 14.42 

G 439 511 473 (UP)   10.92 

H 414 473 438 (DW) 35   7.4% 8.81 

I 322 406 351 (UP)   16.61 

J 355 498 433 (DW)      82      23.4% 27.16 
One hundred paired points, one point sampled 

upstream just close to the bridge and its pair sampled 
downstream along the streamline in the range of 300 
meters from the bridge, were selected on TM images. 
These one hundred paired points were evenly sampled 
from different SSC water in study area. 

The comparison of SSC showed that in the vicinity 
of HBB can change significantly on opposite sides of 
the bridge. When water turbidity was low upstream, 
SSC tends to increase downstream (Fig. 5d). In general, 
the more turbid the water in upstream, the less SSC 
increases amplitude downstream (Fig. 5c). If water 
turbidity was high (> 350 mg·l-1) upstream, SSC 
decrease can be observed in the range of 300 meters or 
further downstream from the bridge (Fig. 5d).  

4. DISCUSSION 

4.1. SSC Sensitive Spectral Bands  

Water spectral characteristics in Hangzhou Bay 
from a previous study [11] and in situ measurements 
(Fig. 2) were consistent with the measurement results 
from the Yellow River Estuary [23]. They showed the 
typical spectra characteristics of high turbidity water 
seen in other studies [24-26]. Water surface reflectance 
of the study areas in Hangzhou Bay are also dominated 
by the SSC [11, 26]. 

The spectral curves show clearly that the reflectance 
in the red and NIR bands correspond well to high SSC 
water (Fig. 2, Fig. 4 and Fig. 5). So the difference of 
water spectral profile curves from Landsat TM images 
of Hangzhou Bay in the red and NIR bands on opposite 
sides of the bridge are mainly induced by the changes in 
SSC. 

4.2. Effectiveness of SSC Inversion  

Based on the analysis above, red and near-infrared 
band can be adopted as the main band for establishing 
surface water SSC remote-sensing inversion model in 
Hangzhou Bay. The distribution of inversed SSC found 
in this study (taken for example on July 28, 2007) is 
consistent with the SSC inversion results in previous 
research [18]. Therefore, the inversed result can be used 
to conduct SSC comparison between two sided of the 
bridge in every single image of Hangzhou Bay.  

4.3. The Evidence of SSC Differences on Opposite 
Sides of HBB 

The first evidence is the difference in spectral 
profile and water classes on opposite sides of the bridge. 
The difference in the water spectral profile curves in the 
red and NIR bands on opposite sides of the bridge is 
mainly induced by SSC (Fig. 4). Therefore, the 
difference in classes on opposite sides of the bridge and 



the phenomenon of the bridge isolating the water body 
can indicate a distinct difference in the SSC (Fig. 3d). 

The second and direct evidence is SSC inversion 
results. The distribution of SSC (Fig. 4(A2-C2)) 
suggests an obvious change in the SSC between the 
upstream and downstream sides of the bridge. The 
bridge appears to be a line of separation interrupting the 
sediment transport and leading to SSC differences on 
opposite sides of the bridge. 

CONCLUSIONS 

Landsat TM images can be used to investigate the 
impacts of a bridge on local ocean environments. It is 
appropriate to use TM3 and TM4 to inverse the SSC in 
the bay area. Three aspects (Fig. 7A), unsupervised 
classification, the spectral feature analysis and the 
inversion of SSC, together can display very well the 
SSC changes induced by crossing bay bridge in 
Hangzhou Bay. These changes indicate that the bridge 
can induce the change of sediment transport. 

The variations of SSC in vicinity of the bridge from 
upstream to downstream are significant. Under the 
condition of low turbidity in upstream water, the SSC 
tends to increase in downstream side; however, for high 
turbidity in upstream water, the SSC tends to decrease 
downstream (Fig. 7B).  

 

 
 

Figure 7. Remote sensing method and mechanism of 
bridge impacts on SSC nearby. 
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