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Abstract: We analyzed the impacts of islands on suspended sediment concentration (SSC) in Zhoushan
Coastal waters based on data from HY-1C, which was launched in September 2018 in China, carrying
Coastal Zone Imager (CZI) and Chinese Ocean Color and Temperature Scanner (COCTS) on it for
offshore observation. A new SSC retrieved model was established based on the relationship between
in situ SSC and the reflectance in red and near infrared bands of CZI image. Fifteen CZI images
obtained from October to December 2019 were applied to retrieve SSC in Zhoushan coastal waters.
The results show that SSC in study area is 100–1600 mg·L−1. The SSC near islands changes obviously.
Upstream of the islands, SSC is lower than downstream. During the flood and ebb, when the current
passes through the islands, circumfluence will appear, under certain geophysical factors, generating
Karman vortex streets downstream of the islands. The sediments were stirred by the fast speed
current at the outer side of vortex street to the sea surface inducing higher SSC at the outer side of the
vortex street, while the central sediments of the vortex street were lower. In the direction of ocean
currents, the SSC of the vortex street downstream of islands is changing regularly, i.e., increasing,
then decreasing and increasing again and then decreasing in a snaking vortex street whose length
downstream is between 1000 and 8000 m long.
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1. Introduction

Dynamic processes, such as the ocean waves, currents, tides and eddies, are complex and
influential [1]. These dynamic environmental factors should be considered for offshore marine
management. The interaction between the coastal seabed topography, islands and ocean currents is
significant [2–4].

Eddies, as one important ocean dynamic factor, can induce the changes of many other ocean factors,
such as the exchange of heat, nutrients and suspended matters [5]. Ocean eddies, mainly produced
by baroclinic instability and density fronts, can induce ocean water upwelling and downwelling.
Upwelling carries cold seawater and nutrients to the surface of the ocean, while the downwelling brings
warm and nutrient-poor seawater back to the seabed [6,7]. As early as 1958, the British oceanographer
Slobby applied acoustic technology to detect the presence of eddy in the ocean. Since an eddy is
a marine water mass whose special features can be observed by satellite, many methods of eddy
observation have been developed based on satellite technology [8,9]. In recent years, radar satellites
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can speculate the existence of eddy efficiently by detecting the velocity of sea surface currents [10].
Meanwhile, ocean color is another key factor in detecting the existence of eddies based on their impact
on the concentration of suspended sediments, chlorophyll and organic matters as well as temperature
in the ocean [11].

Waves and currents play an important role in transporting suspended matters in ocean, especially
in coastal areas [12,13]. Remote sensing technology was first applied for the distribution of marine
suspended matters observation in 1970 [14]. In the past 50 years, many researchers have devoted their
studies to combining satellite data to analyze the changes in marine suspended matters [15–17] and
the retrieving techniques of suspended sediment concentration have tended to be more mature [18–20].
Many water quality parameters, including suspended sediment concentrations [21], can be obtained
from satellite remote sensing data [22,23]. Meanwhile, the Coastal Zone Imager (CZI) and Chinese
Ocean Color and Temperature Scanner (COCTS), boarded on HY-1A and B, have greatly helped us in
Chinese marine coastal zone management [24,25].

The Karman vortex street, a repeating pattern of swirling vortices, is caused by a process of
vortex shedding, due to the unsteady separation of flow of fluids around obstacle bodies [26]. Being a
special type of eddy, the Karman vortex street was first discovered by German scientist Theodore von
Karman [27]. With the advent of later meteorological satellites, researchers began to pay attention to
this interesting natural phenomenon in atmospheric [28,29]. Based on the analysis mentioned above,
can the Karman vortex street be detected from the satellite by the change in suspended sediment
concentration (SSC)?

In this paper, we analyzed the impacts of coastal islands on distribution of suspended sediment
concentration based on satellite data obtained from a new launched satellite HY-1C, which has an
advanced resolution in time and space.

The structure of this article is as follows. Section 2 contains the introduction of the data and
methods. Section 3 describes the currents in the Zhoushan Islands and the retrieved SSC distribution
using a new model. Sections 4 and 5 is the discussion and conclusion.

2. Data and Method

2.1. Study Area

The Zhoushan Islands (121◦30′~123◦25′E, 29◦32′~31◦04’N) are located at the outside of Hangzhou
Bay and south side of the Yangtze River estuary, in the East China Sea (Figure 1). The Zhoushan
Islands area, including 1390 islands of different shapes and sizes, is China’s largest archipelago [30,31].
The territory is 182 km in length from east to west, 169 km in width from north to south, with the sea
area of 20,800 km2 [31].
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The depth of the sea in the vortex streets area is mainly in the range of 7-16 m [32]. The northern
part of Zhoushan coastal waters is close to the Yangtze River, the longest river in China [33]. The water
flowing through the Qiantang River in Zhejiang Province flows into Hangzhou Bay from the west.
Zhoushan coastal waters are in Hangzhou Bay, which is a strong tidal estuary and is dominated by the
semidiurnal tide [34]. The direction and speed of the current in Hangzhou Bay is regularly changeable
with time [35]. The bottom terrain of the Hangzhou Bay is undulating, and the tidal range increases
from west to east, with the tidal peaks of the Qiantang River estuary, the water flowing southward of
the Yangtze River estuary, and the East China Sea tide [36,37]. The mouth of Zhoushan coastal waters
faces the East China Sea, and its SSC is significantly reduced [38]. In flood periods, low SSC seawater
flows from the open sea into the Zhoushan [39].

Zhoushan sea area is characterized by a strong semidiurnal tidal current, which interacts with the
islands, inducing the change in the direction and speed of the current [34]. This change is regular every
day in Zhoushan coastal waters [40]. The Zhoushan Islands are located in the mouth Hangzhou Bay,
whose average depth is around 9 m at a low tide and 13 m in flood periods. Hangzhou Bay includes
shallow shoals in the northeast and a large sandbar in the south [41]. Runoff inflow of the Yangtze
River and Qiantang River induces high SSC, low salinity and chloride ion concentration in Zhoushan
coastal waters [32]. The smallest salinity value appears near the coast and it increases with the distance
from the shore [42]. The climate of Zhoushan sea is dominated by the north subtropical monsoon.
The sea surface temperature changes with the season, mainly affected by the local geographical and
hydrological cycle, such as Kuroshio [43,44]. The detail information of study area and sampling points
was show in Figure 1.

2.2. Satellite Data

Chinese HY-1C satellite, was launched in 2018. It was equipped with five payloads, including
Chinese Ocean Color and Temperature Scanner (COCTS), Coastal Zone Imager (CZI), Ultraviolet
Imagery (UV), Satellite Calibration Spectrometer (SCS), and Automatic Identification System (AIS).
CZI can be applied not only for land observation, but also for effective ocean observation, especially for
offshore, islands and coastal observations. CZI has red, green, blue and near infrared bands, with the
spatial resolution of better than 50 m and the width of more than 950 km. In this study, fifteen CZI
images from HY-C were applied to analyze suspended sediment distribution in Zhoushan Coastal
waters. These images were obtained around 10:50 local time under clear sky conditions. The detailed
information about the CZI images including the bands, resolution, applications of the CZI sensor is
shown in the Table 1.

Table 1. Details of HY-1C Coastal Zone Imager (CZI) sensor and date of data acquisition.

Bands/µm Resolution/m Applications Date

Band 1: 0.421–0.500 50 Chlorophyll, Pollution, Sea ice,
Underwater topography

10 October 2019
12 October 2019
15 October 2019
25 October 2019
30 October 2019
31 October 2019

5 November 2019
8 November 2019

11 November 2019
14 November 2019
30 November 2019
2 December 2019
9 December 2019

17 December 2019
21 December 2019

Band 2: 0.517–0.598 50
Chlorophyll, Medium and low

concentration sediment, Pollution,
Vegetation, Sea ice, Tidal flat

Band 3: 0.608–0.690 50 Medium concentration sediment,
Pollution, Vegetation, Soil

Band 4: 0.761–0.891 50 Vegetation, High concentration
sediment, Atmospheric correction
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2.3. In Situ Data

Two field data collection campaigns were conducted from October to December 2019 (denoted by
the small black square in Figure 1. One important survey was carried out to collect water samples
from 100 stations at around 10:50 on 11 December 2019 using 15 fishing boats at different positions in
the sampling area; their locations were changed and water samples were collected between 10:20 and
11:20, giving a total of 100 water samples used in this study. The SSC values of the water samples were
measured in the laboratory: 50 were used to construct an SSC inverse model based on satellite data
obtained synchronously, with the remaining 50 used to validate the model.

To study the changes in spectral characteristics induced by SSC and determine the wave bands
sensitive to changes in SSC, the other survey was conducted on 27 October 2019, from 8:00 to 16:00.
The remote-sensing reflectance (Rrs) and SSC were synchronously measured.

The Rrs value was detected using an ISI921VF visible, near-infrared (NIR) spectral radiometer
with a spectral range of 380–1080 nm. The measured Rrs is calculated from Equation (1):

Rrs =
Lw − ρLs

πLp/ρp
(1)

where Lw is the radiance received by the ISI921VF above the sea–water surface; Ls is the radiance of
the sky; ρp is the reflectance of the plate; Lp is the radiance received by the ISI921VF above the plate;
and ρ is the dimensionless air–water reflectance and is always in the range 0.022–0.050. ρ is calculated
assuming a black ocean at wavelengths from 1000 to 1020 nm [45] and wavelength independence [46].

The depth of sampling area is mainly in the range of 4–20 m. Three samples were taken 1 m below
the sea in every point using GCC2 plexiglass water bottle (3 L) and each sample was weighed, dried
and measured, then averaged to get the sampled point value.

SSC, the per unit volume of particulate matter, was collected from underwater samples.
The depth of sampling area is mainly in the range of 4–20 m. Three samples were taken 1 m below

the sea surface in every point using GCC2 plexiglass water bottle (3 L) and each sample was weighed,
dried and measured, then averaged to get the sampled point value. Prior studies provided methods of
suspended solid concentration measurements in river [47] and in sea water [48]. These water samples
were first filtered, then dried for 24 hours at 40 ºC and reweighed for obtaining the SSC value [48].
Low salt content in Hangzhou Bay water, there is negligible effect on SSC measurement [47].

The tidal current of study area from March 10th to 11th, 2012 was measured by a direct reading
ammeter SCL9-2 to qualitatively analyze the changing regularity of tidal current and flow direction.
SCL9-2 can be used to measure the speed and direction of water at different depth in oceans, harbors,
rivers, lakes, estuaries and it is especially suitable for shallow waters.

2.4. Satellite Data Processing

The primary products, including pixel brightness value of images in each band, called digital
number, are needed when calculating the reflectance of atmospheric top from the digital number [49].
The process of calculating ground reflectance from the reflectance of the top of the atmosphere is called
atmospheric correction [50].

Before the process of radiation calibration and atmospheric correction, we need to eliminate
geometric distortion in satellite images—this step is called geometric correction. A polynomial
geometric correction model was widely used in this step [51]. Generally, the positional accuracy was
less than 0.5 pixels of the root mean square error (RMSE) in satellite images. Radiation calibration and
atmospheric correction were performed on HY-1C data before SSC retrieving. Radiation calibration
is the process of converting the digital number of the satellite images into a physical quantity such
as radiance, reflectance or surface temperature [49]. This is done by reading the value of the gain
and bias in the downloaded header file, and then calculating the reflectance with the formula of
radiation calibration. The process of atmospheric correction mainly eliminates the influence of Rayleigh
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scattering and aerosol scattering [25]. The process was based on the 6SV radiative transfer mode [52],
and calculating the Rayleigh scattering reflectance of atmospheric molecules by CZI Rayleigh lookup
tables (LUT). The correction of aerosol scattering was based on the MODIS aerosol data [25]. The next
step, after calculating the scattering reflectance of CZI, is to do the land mask based on the Normalized
Difference Water Index (NDWX). Finally, we applied the atmospheric correction algorithm for HY-1C
CZI in turbid waters to get the remote sensing reflectance which we can use in establishing the SSC
model [53].

We collected the SSC data downstream of the island from the place of the vortex streets based
on the SSC distribution images, plotting the obtained values to observe the changes in SSC along
the vortex.

All calculations were performed in the software Python 3.7.

3. Result

3.1. Currents in Study Area

Dominated by semidiurnal tidal current in study area, the direction and speed of the current in
study area change with time regularly (Figure 2). Taking a tidal cycle during 10–11 March 2012 as
an example, the seawater in the East China Sea began to flow into the Zhoushan waters at 7:00 in
the morning, flooding. Within two or three hours, the flow rate increased to the peak value, then the
rising tide velocity began to decrease, and the flow direction continued to the west, but the westward
angle became smaller and smaller. At 3 p.m., the flow began to move eastward, and the seawater
flowed to the East China Sea. The eastward angle increased and the flow velocity decreased gradually.
This continued until 10 p.m., and then the tide process began again. From 7 a.m. to 3 p.m. is the
flood period, from 3 p.m. to 10 p.m. is the ebb, and then the flood is from 10 p.m. to 2 a.m. the next
day. The ebb is from 2 a.m. to 7 a.m. The tide in study area presents the characteristics of irregular
semidiurnal tide, there are two floods and ebbs in a day (Figure 2).
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Figure 2. Tidal velocity and direction during a tidal cycle during on10–11 March 2012 (The length of
the arrow refers to the velocity of the currents and the direction measured counterclockwise from the
east, the north is 90◦).

The Zhoushan sea area is characterized by a strong semidiurnal tidal current and the tidal type
is stable. Similar patterns and tidal features are repeated every day [40]. The tidal current, with its
direction and speed changing with time regularly in a day, interacts with islands and induces different
wake downstream of the islands.

3.2. A New SSC Estimation Model for HY-1C

The red and near-infrared bands are sensitive to suspended sediments in seawater [36,54].
A regression model was established based on the reflectance values averaged from of the nine-pixel
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values adjacent to the sampling point in the satellite data were collected, and with the in situ SSC
values. The model is as follows:

SSC = 64.54− 7033.83×RRED + 96027×RNIR (2)

where SSC is the suspended sediment concentration (mg·L−1), RRED and RNIR are respectively, the
calibrated reflectance (The remote-sensing reflectance Rrs in units of 1/steradian.) in the third (red) and
fourth (near-infrared red) bands after the atmospheric correction.

The other 50 different in situ SSC data were applied to evaluate the newly built model (Table 2
and Figure 3).

Table 2. In situ data and model data of suspended sediment concentration (SSC).

Number Longitude/◦ Latitude/◦ In-situ
Data/mg·L−1

Model
Data/mg·L−1

1 120.99 30.54 1096.31 1083.01
2 121.07 30.59 663.89 755.59
3 121.09 30.12 1382.74 1440.36
4 121.16 30.34 630.70 709.77
5 121.17 30.90 1193.36 1259.10
6 121.17 30.38 992.99 1070.25
7 121.19 30.45 1073.56 1071.10
8 121.19 30.04 982.33 1073.77
9 121.19 30.61 497.32 493.53
10 121.32 30.36 1091.73 1176.40
11 121.35 30.47 948.28 951.53
12 121.38 30.69 1009.75 1026.50
13 121.39 30.75 973.20 1006.46
14 121.39 30.40 910.12 920.13
15 121.41 30.70 937.92 948.28
16 121.41 30.74 904.92 919.13
17 121.42 30.70 907.22 917.80
18 121.43 30.74 1055.82 1064.06
19 121.47 30.22 1163.70 1217.70
20 121.48 30.26 383.35 417.10
21 121.49 30.33 793.23 805.07
22 121.49 30.33 775.87 786.53
23 121.50 30.27 797.85 734.57
24 121.61 30.74 765.61 780.50
25 121.70 30.38 897.53 908.25
26 121.71 30.83 764.28 779.68
27 121.73 30.444 821.40 833.64
28 121.78 30.85 674.15 689.41
29 121.86 30.75 683.77 692.71
30 121.94 30.47 766.72 776.97
31 121.96 30.51 733.29 742.55
32 122.02 30.27 649.56 695.65
33 122.09 30.88 574.28 633.07
34 122.13 30.19 504.42 500.27
35 122.13 30.20 584.35 587.96
36 122.14 29.75 416.56 476.93
37 122.14 29.77 573.37 571.89
38 122.15 29.81 597.92 603.63
39 122.28 30.17 459.11 445.61
40 122.32 30.79 400.66 388.88
41 122.38 30.61 313.96 296.72
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Table 2. Cont.

Number Longitude/◦ Latitude/◦ In-situ
Data/mg·L−1

Model
Data/mg·L−1

42 122.39 30.65 335.19 315.77
43 122.45 30.81 345.67 327.19
44 122.46 30.02 283.14 267.77
45 122.50 30.76 312.50 293.05
46 122.52 30.22 284.70 270.13
47 122.59 30.44 218.35 223.60
48 122.64 30.61 230.08 241.25
49 122.70 30.09 221.27 229.99
50 122.76 30.31 235.30 244.00
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Figure 3. Scatter plot for model SSC and in situ SSC verification.

Compared to the in situ SSC data, the result of the model-estimated result shows high consistency
(RMSE is 29.11 mg·L−1, and the R-square is 0.96). Therefore, the new model is suitable for HY-1C to
retrieve SSC in Zhoushan coastal waters. The information of scatter plot for model SSC and in situ SSC
verification is shown in Figure 3.

3.3. Model-Retrieved SSC

3.3.1. SSC Distribution in Study Area

The samplings data were used to build the SSC inverse model and we applied this newly
built model to retrieve the suspended sediment concentration from satellite images at different time.
Using the new model, we obtained the distribution of SSC in study area from October to December
2019 (Figure 4). More than fifteen CZI images were obtained from the National Satellite Ocean
Application Service (https://osdds.nsoas.org.cn) in China and six CZI images were taken as an example
and analyzed in Figure 4. The SSC in study area is between 100 mg·L−1 and 1600 mg·L−1, showing high
turbid water character. The SSC in the middle part of Hangzhou Bay, where the water depth is relatively

https://osdds.nsoas.org.cn
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shallow with the depth 5–9 m, is relatively higher, with SSC being in range of 1100–1500 mg·L−1.
During the beginning and ending of ebb and flood periods, shown in Figure 4b,f, SSC is relatively
lower in the study area, with the value being around 100–500 mg·L−1. Meanwhile, in the middle-flood
and ebb periods, shown in Figure 4a,d,e, a higher SSC appears in the study area, with its value being
around 900–1200 mg·L−1. The SSC distribution in the ebb period is obviously different from that
in the flood period with high SSC area moving eastward in the ebb period. Meanwhile, the lower
the current velocity is, the lower the SSC will be (Figure 4b,c,f). When the tidal current passes the
islands in Zhoushan, in both ebb and flood, the tidal current will interact with islands, inducing the
resuspension of the sediment near the islands. The sediment concentration downstream of the islands
becomes higher.
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3.3.2. SSC around Islands

Dynamically, the islands will induce the Karman vortex street, whose outer speed is relatively
fast, under a certain condition when the currents pass the islands. The depth of the sea in the vortex
streets area is mainly in the range of 7-16 m [32]. The currents, because of the interaction with the
islands, scour the bottom around islands, causing resuspension of suspended sediments. More than 45
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Karman vortexes were founded and analyzed around the islands from HY-1C images, taking three
vortex streets (the places are shown in Figure 1) as examples (Figure 5).
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The external SSC is higher than that in center of the small vortex, and the SSC in the outside of
the small vortex is higher than that of the surrounding waters. Therefore, we can clearly identify the
vortex from the SSC images. They are more obvious in the study area at mid-flood period, and SSC
changes as the length increases. Along the vortex street downstream from the islands, as shown in
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Figure 5a–c, the SSC increases first, then decreases, increases, and decreases, repeating until the vortex
disappears. Generally, the length of the vortex streets in the study area is about 1000 to 8000 m.

4. Discussion

4.1. Applicability of New Model

HY-1C, a new Chinese satellite, is used for costal ocean environment observation [25]. Zhoushan is
a coastal area with a high concentration of suspended sediments. The prior inversion models are not
suitable for HY-1C to inverse SSC in this area [31]. The suspended sediment distribution obtained
using the newly established model in Zhoushan coastal waters has a high consistency with in situ SSC
as well as retrieved from other satellite data such as MODIS [19,55]. It is indicated that this new model
is suitable for SSC retrieval in Zhoushan coastal waters.

4.2. The Factors Affecting Distribution of Suspended Sediment Concentration

Many natural factors, including fresh water injection, tidal currents, the bottom terrain, affect the
distribution of SSC. The strong tide scouring the sediments at the bottom of the Hangzhou Bay and
the sediments from the Changjiang River estuary flow into the bay with the tide are also important
factors. These factors provide Hangzhou Bay with a strong tide and high concentration of suspended
sediments [19,56]. Furthermore, when the current passes through the islands, it will wash the island
and carry the sediment. The carried sediments move with the current and form a belt of hundreds of
meters or kilometers behind the island.

4.3. Islands Induced Karman Vortex Streets Influenced SSC Distribution

The tidal current is affected by the islands during this movement. When passing through the
island, the water flow is blocked and diverted to both the left and right sides of the island [57], forming
vortex streets downstream of the island. The increased velocity around both sides of the island intensify
the agitation of the water outside the vortex street and induce sediment resuspension. Meanwhile, in
the center of the vortex, the convergency of water promotes the settlement of suspended sediments,
resulting in low SSC there [58]. Therefore, the concentration of sediment outside the vortex is higher
than in the center of the vortex [1,59].

5. Conclusions

Highlight findings of this paper include: (1) a new launched satellite HY-1C was applied for
offshore observation; (2) a new SSC retrieved model was established based on CZI image from HY-1C;
(3) the SSC near islands changes obviously, forming a snaking “SSC tape” with its length between 1000
and 8000 m downstream of the islands.

HY-1C, a Chinese new ocean satellite, has a great potential for offshore monitoring. The new SSC
inverse model was built based on the relationship between the red and near-infrared band of CZI
image and in situ SSC. The SSC retrieved from HY-1C CZI images using the new model shows a good
consistency with in situ measurements. CZI images from HY-1C can be applied for offshore ocean
color and dynamic environment monitoring.

The SSC in Zhoushan coastal waters is in the range of 100–1600 mg·L−1. The SSC in the study
area is mainly influenced by tidal currents, underwater terrain and islands. The SSC downstream of
the islands is higher than other areas, and there exists a “SSC tape” downstream of the islands.

The tidal current is affected by the islands (Figure 6). When passing the island, the water flow
is blocked and diverted to both the left and right sides of the island, leading the current speed and
direction to change downstream of the island. As the current passes through the islands, circumfluence
will appear. Under certain geophysical factors, a vortex street with its length in the range of 1000 to
8000 m appears downstream of the islands. SSC changes as the length increases. The external SSC is
higher than that in center of the small vortex, and the SSC in the outside of the vortex is higher than
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that of the surrounding waters. Therefore, we can clearly identify the vortex from the SSC images.
They are more obvious in the study area at the mid-flood period.
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The mechanism of the impacts of the islands on SSC distribution lies in the islands affecting
the hydrodynamic environment and inducing the formation of a Karman vortex street (Figure 6).
The high-speed flow of the seawater outside the vortex agitates the SSC to float, inducing higher SSC
outside the vortex street and lower SSC in the center. The SSC fluctuates in the vortex street of the
islands, forming a snaking “SSC tape”, i.e., SSC increases, decreases, increases and reduces, repeating
these changes until the vortex street disappears.
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