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Abstract: We analyzed the distribution of chlorophyll-a (Chla) in the Bohai Sea area based on data
from the geosynchronous orbit optical satellite Gaofen-4 (GF-4), which was launched in 2015, carrying
a panchromatic multispectral sensor (PMS). This is the first time the geosynchronous orbit optical
satellite GF-4 remote-sensing data has been used in China to detect the Chla change details in the Bohai
Sea. A new GF-4 retrieved model was established based on the relationship between in situ Chla
value and the reflectance combination of 2 and 4 bands, with the R2 of 0.9685 and the total average
relative error of 37.42%. Twenty PMS images obtained from 2017 to 2019 were applied to analyze
Chla in Bohai sea. The results show that: (1) the new built Chla inversion model PMS-1 for the GF-4
PMS sensor can extract Chla distribution details in the Bohai Sea well. The high Chla content in
the Bohai Sea is mainly located in coastal areas, such as the top of Laizhou Bay, Bohai Bay and
Liaodong Bay, with the value being around 13 µg/L. The concentration of Chla in the Bohai Strait and
northern Yellow Sea is relatively low with the value being around 5 µg/L. (2). Taking full advantage
of the continuous observation of geostationary orbit satellite, GF-4 with a high-resolution sensor
PMS of 50 m can effectively detect short-term change (changes within 10 min) in Chla concentration.
The changes mainly appear at the southwest and northeast costal area as well as in the center of Bohai
Sea with the change value of around 3 µg/L. (3) The change of Chla concentration in the Bohai sea is
related to the environmental factors such as seawater temperature, salinity, illumination and nutrient
salts, as well as the dynamic factors such as wind, flow field and tidal current.
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1. Introduction

The Bohai Sea, located in north eastern China, is a semi-closed shallow sea, into which a large
amount of sewage is discharged along the Gulf Coast. Environmental pollution of the Bohai Sea
is becoming increasingly serious. The eutrophication of the water body is significantly intensified,
resulting in frequent occurrence of red tides [1].

As an important part of marine environmental factors and water quality parameters, chlorophyll-a
(Chla) has great significance for the marine ecological environment [2]. The detection of Chla
concentration based on remote-sensing technology aims to calculate the Chla concentration using
off-water reflectance [3] after atmospheric correction [4] and geometric correction of remote-sensing
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satellite image data. In prior studies, different inversion models [5] are developed to retrieve Chla
concentration according to the off-water emissivity.

For the typical type II water body in the Bohai Sea, it is an urgent task to monitor the water
color and quality change details of the sea [6]. Chla concentration can help us monitor the water
quality and understand the characteristics of the coastal waters, as well as provide scientific basis for
the management, and comprehensive utilization of the Bohai Sea [7–9]. It will be significant to find
a more suitable Bohai Sea algorithm of Chla concentration inversion for the new sensor. The inversion
algorithms for detecting Chla based on remote-sensing technology can be divided into two categories:
empirical formula methods and model-based analytical methods [10]. At the beginning of 1990,
Gitelson calculated the Chla concentration based on the ratio of the red band and the infrared band [11].
Meanwhile, neural network and semi-analytical algorithms, as well as bio-optical models were also
used to invert Chla concentration [12]. Shu Xiaozhou adopted Gitelson’s method, corrected by using
the phycoerythrin absorbance in 624 nm spectra, to improve the calculation accuracy of Chla [13]. In
China, many prior studies analyzed the correlation [14,15] between the normalized difference and
the in situ Chla concentration, and found that the two show a significant negative correlation. The Chla
in type II waters retrieved from the incineration algorithm shows that the average absolute error of
the results is 1.081 [16]. Using satellite remote-sensing data, the detection of Chla concentration of type
II water is greatly affected by suspended sediment, colored dissolved organic matter (CDOM), etc. [17].
A multi-factor algorithm was established previously by researchers for ocean water color hyperspectral
information. The quantitative relationship between the common contributions of water color factors
such as Chla, suspended sediment, and CDOM and the emissivity of water was developed based
on high-resolution and hyperspectral remote-sensing fusion data [18]. At present, there are many
empirical and semi-empirical algorithms for marine Chla inversion, and most of them use satellite
data, such as Moderate-resolution Imaging Spectroradiometer (MODIS) data and Operational Land
Imager (OLI) data [19–22], from the near-polar solar synchronous orbit.

In recent years, due to the influence of manmade and natural factors, the environment of China’s
coastal waters has undergone great changes, and the nutrient salt structure of some sea areas has
changed, resulting in increasingly frequent red tide disasters [23]. Prior studies found that, in general,
the annual variation of Chla concentration in the far coastal waters of Bohai bay is relatively low.
Furthermore, the Chla concentration variation is characterized by a large range of continuous changes,
and the seasonal variation in the near shore waters is obvious due to the influence of current conditions
and precipitation [2]. Most important of all, the effect of tidal wave motion on Chla concentration
distribution cannot be ignored. Tidal wave movement is the most important marine dynamic process
in the Bohai Sea and plays an important role in controlling the marine environment [24].

The Gaofen-4 (GF-4) satellite is a geosynchronous orbit optical satellite with an orbital height
of 36,000 km and a high resolution of 50 m, which has the advantages of realizing real-time cryptic
observation of the marine environment [25,26]. GF-4 can observe disaster events such as algal blooms
and red tides through pointing control to provide fast and reliable optical remote-sensing data [27].
The GF-4 satellite is the Earth observation satellite with the highest geostationary orbit resolution in
the world. The electronic maritime surveillance satellite constellation basically meets the needs of ship
surveillance in terms of coverage and time resolution [28]. It not only has continuous surveillance
capabilities and large-scale coverage capability, but also has a geostationary orbit (GEO) high-resolution
optical detection with fast response capability and higher positioning accuracy (better than 200 m) [29].
It can realize continuous monitoring of key targets, and make up for the problems of low time
resolution and small coverage of traditional reconnaissance satellites. Meanwhile, it will also launch
a series of new application areas, including the ability to move across the surface of the Earth based
on video shooting methods, target detection and monitoring [30], long-term evolution monitoring
of various natural elements of the Earth, etc. Furthermore, it has a quick response capability, and
the delivery time from user’s application to geospatial information can be reduced to a few minutes.
GEO high-resolution optical imaging satellite is a new generation of optical remote-sensing satellite [31].



Sensors 2020, 20, 5471 3 of 17

Its outstanding features can be summarized in two words, one is “moving target surveillance” and
the other is “real-time surveillance”. It raises the satellite reconnaissance function to the surveillance
function, which can realize the dramatic change of satellite application. In addition, GEO high-score
satellites can enhance the value of information applications based on new product types [29]. However,
there is no suitable empirical model based on GF-4, a high-resolution satellite in geosynchronous orbit,
for Chla inversion in the coastal waters such as Bohai Sea. Therefore, it is urgent for us to develop Chla
inversion algorithms for GF-4.

In this paper, the concentration distribution and change details of Chla is analyzed based on
the panchromatic multispectral sensor (PMS) data of the newly launched high-resolution GF-4 satellite
in synchronous orbit. Based on GF-4 satellite PMS data and field measurement data, an empirical
algorithm model of Chla inversion is established. The advantages of geostationary orbit satellite for
continuous observation are used to analyze the detailed change of Chla in a short time (within 10 min)
in the Bohai Sea.

The structure of this paper is organized as follows. Section 2 describes the study area, satellite
date and data processing. Section 3 describes the detailed process of establishing the inversion model
of Chla concentration. The discussion and conclusions are summarized in Sections 4 and 5.

2. Data and Method

2.1. Study Area

The Bohai Sea (37◦07′~40◦56′ N, 117◦33′~122◦08′ E) is an inland sea in China (Figure 1a).
Surrounded by the three sides and communicating with the Yellow Sea through the Strait, the Bohai
Seaport is 59 nautical miles wide and contains more than 30 islands [32]. As an important spawning
ground and a bait fattening farm for China’s economy fish and shrimp, 40% of the important fishery
resources in the Yellow Sea, Bohai Sea and the northern East China Sea are spawning here [2]. In
recent years, however, fishery resources have been seriously declining, especially for high-quality
species. The marine Chla is a crucial indicator of the existing amount of phytoplankton, and primary
productivity [33]. Therefore, Chla and primary productivity are very important in the Bohai Sea
investigation of the environment and resources. The detailed information of study area and sampling
points is shown in Figure 1.
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2.2. Satellite Data

The GF-4 satellite is a geosynchronous orbit optical satellite with an orbital height of 36,000 km and
a resolution of 50 m, which fills the gap of high-resolution geosynchronous orbit optical remote-sensing
satellites in China. GF-4 was successfully launched at the XiChang Satellite Launch Center on 29
December 2015, and sent back the first image on 5 January 2016 [34]. This is China’s first high-resolution
geosynchronous orbit remote-sensing satellite, equipped with six bands and a visible light staring
camera (PMS) with a resolution of 50 m/mid-wave infrared 400 m and a width of more than 400 km
(Table 1) [35]. The GF-4 satellite provides fast, reliable and stable optical remote-sensing data for
disaster detection, coastal zone management, meteorology and other applications, opening up a new
field of high-resolution Earth observation in geosynchronous orbit [36]. In this study, 20 PMS images
from GF-4 were applied to analyze Chla concentration and distribution trend in Bohai sea. The detailed
information about the PMS images including the bands, resolution, width and revisit time of the PMS
sensor is shown in the Table 1.

Table 1. Band information of panchromatic multispectral sensor (PMS) on the Gaofen-4 (GF-4) satellite.

Type Band
Number

Band Range
(µm)

Spatial
Resolution (m)

Width
(km)

Revisit
Time

Near-Infrared
(VINR)

1 0.45~0.90

50 400 20 s

2 0.45~0.52
3 0.52~0.60
4 0.63~0.69
5 0.76~0.90

Middle Infra-red
(MWIR) 6 3.5~4.1 400

2.3. In Situ Data

The data sampling activities were conducted in the Bohai Sea from 146 stations as shown in
Figure 1b at around three o’clock in the afternoon on 2 September 2019. We drew seawater in the ocean
at around 5 m depth using the water pump, allowing seawater to enter the sample chamber. In this way
we could determine the content of Chla in phytoplankton in the seawater. In total, 146 Chla samples
were collected in study area (Figure 1a) for measurements. The in situ samples are first randomly
divided into a modeling group and a testing group, which are 78 and 68 samples, respectively.

Chla data were obtained through the following steps: (1) filtration: 100–500 mL water samples
were filtered with a fiberglass filter and we recorded the volume of the filtered water samples. We rolled
the filter paper into a cigarette shape and placed it in a vial or centrifuge tube. We soaked the filter
paper with 90% acetone solution, recorded the volume, plugged the plug, and left it in darkness at
4 ◦C for 4 h. (2) Extract: a survey of Chla fluorescence extraction method was used to extract: Chla of
acetone extract of red blue light excitation fluorescence, filtering, a certain volume of water (mainly
filter is the phytoplankton), with 90% acetone extract pigment, the use of fluorometer determination
to extract fluorescence value before and after acidizing, and calculation of the concentration of Chla.
In addition to the extraction fluorescence method, spectrophotometry and high-performance liquid
chromatography (HPLC) method can also be used for determination. Two parallel samples were set for
all the samples, and the mean value of the two measurements was taken as the final concentration [37].

2.4. Data Processing

2.4.1. Radiation Calibration

In this paper, pretreatments such as radiation calibration, atmospheric correction, were performed
on the L1A-level GF4_PMS multispectral data (http://dds.nsoas.org.cn/mainIndex.do) in the Bohai Sea
on 2 September 2019 to obtain true reflectance [38].

http://dds.nsoas.org.cn/mainIndex.do
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Atmospheric correction, FLAASH (fast line-of sight atmospheric analysis of spectral hypercube),
was performed based on the results of emissivity calibration of the PMS data [39]. The gain parameters
of GF-4, providing the calibration coefficients for 5 types, are shown in Table 2, and the bias is 0. For
example, the band status 26466 refers to green, red, near red band integration time, unit is millisecond
(ms) [40]. The calculation is expressed as:

Le = Gain ∗ DN + Bias, (1)

where Le is the equivalent radiance at the entrance pupil of the satellite load channel, and gain and
bias are the scaling coefficient gain and offset (http://www.cresda.com).

Table 2. Parameters for GF-4.

PMS/Gain P1 P2 P3 P4 P5

2,6,4,6,6 0.5395 1.0028 1.0418 0.8017 0.5655
4,16,12,16,16 0.3327 0.3803 0.3863 0.3299 0.2343
6,20,16,20,20 0.1752 0.3531 0.2750 0.2946 0.2038
6,40,30,40,40 0.1735 0.1375 0.1308 0.1171 0.0818
8,30,20,30,30 0.1288 0.1887 0.2030 0.1569 0.1084

Where PMS is a sensor with full-color band on the GF4 satellite, and P1-P5 refers to bands 1 to
bands 5.

2.4.2. Atmospheric Correction

Atmospheric correction is the process of eliminating the radiation errors affected by
the atmosphere [4,41]. FLAASH was applied in this article for atmospheric correction, using ENVI
(Environment for Visualizing Images) software based on the effects of radiation calibration. The standard
moderate spectral resolution atmospheric tran smittance algorithm and computer model (MODTRAN)
atmospheric model and the aerosol type of imagery can be used directly [42]. FLAASH, being on
the basis of MODTRAN4 + radiative transmission model, has high accuracy. The FLAASH atmospheric
correction tool avoids the measurement of atmospheric parameters that are synchronized with the image
imaging [43]. It can obtain the estimation of atmospheric properties based on the spectral information
of the pixels on the image maintaining a high degree of reducibility in the spectral information of
the features, and obtain more accurate physical model parameters of the features [44,45]. Furthermore,
the application of the FLAASH model can also correct the “neighborhood effect” caused by diffuse
reflection and perform spectral smoothing on spectral noise caused by artificial suppression [46].

2.4.3. Geometrical Correction of Image

The geometric correction of a remote-sensing image is to correct all kinds of distortion in the process
of imaging and obtain a consistent image [47]. A new image required by a map projection or graphic
expression is an important link in remote-sensing image processing and the most complex and
dense part of calculation [48]. In this paper, the geometric correction module built in ENVI is used
for correction.

2.4.4. Inversion Modeling Method

Firstly, the band combination with the highest correlation coefficient will be selected to establish
the Chla concentration inversion model in the Bohai Sea. The in situ samples are first randomly divided
into a modeling group and a testing group [49]. The modeling group data were applied by linear,
polynomial and exponential means to obtain curve fit for the above factors and the measured Chla
concentration. Finally, the model was tested using in-situ data.

All calculations were performed in the software ENVI and Python 3.7.

http://www.cresda.com
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3. Result

3.1. Correlation Analysis of Panchromatic Multispectral Sensor (PMS) Inversion Algorithm

We collected 146 samples of which 78 were used to establish the inversion formula, and the rest
were used to verify the retrieval results. The detailed analysis is as follows.

Sensitive Bands of Chlorophyll-A (Chla)

The spectral character of water changes with the change of Chla concentrations. With the increase
of Chla concentration, the absorption near 450 nm and 660 nm increases, and it decreases near 560 nm,
while the reflection value increases relatively near 700 nm [50]. The Chla concentration can be estimated
based on the reflectance at different wavelengths [51].

A linear fit was performed using the measured Chla concentration, based on the reflectance data in
2~5 bands, and the correlation coefficients were analyzed (Figure 2). The correlation coefficient between
the single band and Chla is small with the value between 0.04 and 0.71 indicating low correlation
(Figure 2). Therefore, the single band cannot be applied to perform Chla inversion. Bohai Sea is
a typical type II water body and its spectral characteristics are not entirely generated by Chla, but by
the combined action of CDOM, suspended sediment, and Chla [52].
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Figure 2. Correlation between band reflectance and sampled chlorophyll-a (Chla). (a–d): The linear
relationship between the reflectance of band 2,3,4,5 and Chla concentration. The abscissa is the reflectance
of a single band, and the ordinate is the natural logarithm of Chla (Ln(Chla)).

3.2. Band Combination

Based on the single-band factor correlation analysis above, four bands (P2, P3, P4, P5) other than
panchromatic band (P1) are combined flexibly to reveal their correlation with Chla [43]. Twenty band
combinations with relatively high correlation with Chla concentration were applied for analysis in this
study (as shown in Table 3).
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Table 3. Band combination.

Band Combination (X) Correlation Coefficient (R2)

(P5 − P4)/(P5 + P4) 0.68
log(P2/P3) 0.82

(P3 + P4)/(P2 + P5) 0.91
(P3 − P4)/(P3 + P4) 0.81
(P2 − P4)/(P2 + P4) 0.97
(P5 − P4)/(P2 + P3) 0.81

P5/(P3 + P5) 0.11
P5/(P4 + P5) 0.67
P5/(P2 + P4) 0.01
P5/(P3 + P4) 0.29
P5/(P2 + P3) 0.09
P5/(P2 + P5) 0.34
P4/(P3 + P5) 0.88
P4/(P2 + P3) 0.77
P4/(P4 + P5) 0.67
P4/(P3 + P4) 0.55
P4/(P2−P4) 0.66
P4/(P2−P5) 0.74

(P3 − P5)/(P3 + P5) 0.11
(P2 − P5)/(P2 + P5) 0.34

According to the correlation analysis in Table 3, six combinations with strong correlation, and large
correlation coefficient, are selected for detailed analysis and interpretation. Figure 3 is the grayscale
map corresponding to the combination of six bands. Different band combinations provide different
information, and the degree of correlation with Chla concentration is also different.
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3.3. Model Building

On the basis of the above analysis, linear, quadratic and exponential fittings were performed for
the selected 6 band combinations and the measured Chla data, respectively, and 24 different models
are fitted, as shown in Table 4. X in Table 4 is the band combination, R2 is the correlation coefficient
and RMSE is the root-mean-square error. Secondary optimization screening was conducted again to
select 6 models with high correlation coefficients in the 24 models (underlined in Table 4).

Table 4. 24 Models of six band combinations and the corresponding correlation coefficients (R2) and
root-mean-square error (RMSE).

Band Combination(X) Function Fitting Model R2 RMSE (µg/L)

(P4)/(P3 + P5) linear 38.01X − 14.97 0.66 1.005
(P4)/(P3 + P5) quadratic 443.2X2

− 347.1X + 67.95 0.88 0.6102
(P4)/(P3 + P5) exponential exp(−138X2 + 163.3X − 45.55) 0.78 0.8685
(P4)/(P3+P5) exponential exp(43.36X − 19.73) 0.79 0.8374

log(P2/P3) linear –22.08X + 1.287 0.42 1.3245
log(P2/P3) quadratic 262.4X2

− 29.92X + 0.6821 0.58 1.1363
log(P2/P3) exponential exp(22.588X2

− 33.329X − 1.0944) 0.82 0.7866
log(P2/P3) exponential exp(–32.65X − 1.042) 0.82 0.7837

(P3 + P4)/(P2 + P5) linear 10.11X − 9.847 0.50 1.2230
(P3 + P4)/(P2 + P5) quadratic 44.23X2

− 86.04X + 41.73 0.66 1.0202
(P3 + P4)/(P2 + P5) exponential exp(–10.159X2 + 36.408X − 28.69) 0.91 0.5473
(P3 + P4)/(P2 + P5) exponential exp(14.32X − 16.84) 0.90 0.566
(P3 − P4)/(P3 + P4) linear −31.08X + 8.148 0.61 1.0893
(P3 − P4)/(P3 + P4) quadratic 314X2

− 163X + 21.23 0.81 0.7623
(P3 − P4)/(P3 + P4) exponential exp(−42.755X2

− 14.195X + 4.0796) 0.58 1.1882
(P3 − P4)/(P3 + P4) exponential exp(–32.16X + 5.861) 0.58 1.1851
(P2 − P4)/(P2 + P4) linear −16.88X + 5.154 0.68 0.9836
(P2 − P4) /(P2 + P4) quadratic 104.5X2

− 63.29X + 9.459 0.95 0.4051
(P2 − P4) /(P2 + P4) exponential exp (−32.588X2

−6.5659X + 2.3315) 0.97 0.3317
(P2 − P4)/(P2 + P4) exponential exp(−21.03X + 3.673) 0.94 0.4322
(P5 − P4)/(P2 + P3) linear −33.52X − 1.268 0.51 1.2139
(P5 − P4)/(P2 + P3) quadratic 599X2 + 48.14X + 0.7035 0.81 0.758
(P5 − P4)/(P2 + P3) exponential exp(131.95X2

− 26.229X − 4.0486) 0.81 0.8062
(P5 − P4)/(P2 + P3) exponential exp(−44.22X − 4.483) 0.80 0.8279
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The fitting results with a high correlation coefficient of 6 models in Table 4 are shown in
the Figure 4a–f correspond to the band combinations in Table 4. It can be seen from the correlation
analysis in Figure 4 that the correlation coefficient of the exponential fitting form model of band
combination (P2 − P4)/(P2 + P4) is the largest.Sensors 2020, 20, x FOR PEER REVIEW 10 of 18 
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Figure 4. Curve fitting results of 6 models. The abscissa represents the combination ratio of band
reflectivity. The ordinate in Figure 4b,c,e is the natural log of the measured data (Ln(Chla)), and
the ordinate in Figure 4a,d,f is the measured data for Chla. (a): The correlation analysis between P4/(P3 +

P5) band combination and Chla; (b): The correlation analysis between log(P2/P3) band combination and
LN(Chla); (c): The correlation analysis between (P3 + P4)/(P2 + P5) band combination and LN(Chla); (d):
The correlation analysis between (P3 – P4)/(P3 + P4) band combination and Chla; (e): The correlation
analysis between (P2 − P4)/(P2 + P4) band combination and LN(Chla); (f): The correlation analysis
between (P5 − P4)/(P2 + P3) band combination and Chla,
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The modeling group data were applied, by linear, polynomial, and exponential models, to get
curve fit for the above factors and the measured Chla concentration. The combination method with
the largest correlation coefficient is selected to establish a Chla inversion model.

The band combination with the highest correlation coefficient is the fifteenth combination in
Table 4, so the final model (named PMS-1) for Chla inversion in the Bohai Sea area of PMS data is
finally determined as follows:

ρ = exp
(
2.3315− 6.5659X− 32.588X2

)
, (2)

X = (P2− P4)/(P2 + P4), (3)

where ρ is the Chla concentration, the unit is µg/L, P2 and P4 are the reflectance of the 2nd and 4th
bands of PMS data.

Compared measurements from two sources (e.g., field and remote-sensing ones) are necessary [53].
In total, 146 in situ measurements, of which 78 were used to establish the inversion formula, and
the rest 68 were used to verify the retrieval results (Figure 5). In this paper, the correlation coefficients
of modeled Chla and in situ Chla were analyzed to test the significance of the above formula and
showed a significant result with R2 = 0.97, and the critical value of the correlation coefficient r0.05
= 0.374, r0.01 = 0.478, r > r0.01. This linear relationship is considered to be significant. In Figure 5a,
the concentration range of Chla is 0–11µg/L, R2 is 0.97, and RMSE is 0.30. In Figure 5b, the correlation
analysis between the sampling point and the simulation point with Chla concentration below 6 µg/L,
the R2 is 0.96 and RMSE is 0.23. In Figure 5c, the correlation analysis between the sampling point and
the simulation point with Chla concentration below 6 µg/L, the R2 is 0.96 and RMSE is 0.17.
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Figure 5. Comparison of modeled Chla concentration value and in situ Chla value, the x-coordinate is in
situ Chla, and the y-coordinate is model Chla, both in units µg/L. In addition, (a) shows the correlation
fitting of 68 test sampling points with Chla inversion simulated concentration, (b) shows the correlation
fitting of 67 test sampling points with Chla inversion simulated concentration lower than 6 µg/L, (c)
shows the correlation fitting of 64 test sampling points with Chla inversion simulated concentration
lower than 5 µg/L.3.4. Model retrieved Chla concentration in the Bohai Sea.

The distribution of Chla from June 2017 to September 2018 in the study area was retrieved
(Figure 6) using the new model. Twenty PMS images obtained from the National Satellite Ocean
Application Service (https://osdds.nsoas.org.cn) in China were analyzed and six PMS images were
taken as examples (Figure 6). The Chla concentration in Bohai Sea is mainly below 14 µg/L and the high
concentration areas are usually distributed in coastal waters, Laizhou Bay and the eastern Bohai Sea.
The concentration of Chla in the Bohai Strait and northern Yellow Sea is relatively low with the value
being around 5 µg/L. Furthermore, the average value of Chla concentration generally shows a trend
high offshore, low in the distant sea, and the low value dominates most area of Bohai Sea. This is
consistent with the actual situation and prior studies [4].

https://osdds.nsoas.org.cn
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Figure 6. The distribution of Chla concentration in Bohai Sea. Figure 6a–f is the spatial distribution
diagram of Chla concentration at different times after inversion using the empirical formula obtained,
the unit is µg/L. (a): The image Chla inversion concentration distribution map obtained on 9 June 2017;
(b): The image Chla inversion concentration distribution map obtained on 10 June 2017; (c): The image
Chla inversion concentration distribution map obtained on 30 June 2017; (d): The image Chla inversion
concentration distribution map obtained on 12 July 2017; (e): The image Chla inversion concentration
distribution map obtained on 12 January 2018; (f): The image Chla inversion concentration distribution
map obtained on 6 September 2018.

3.4. Details of Short-Term Change in Chla Concentration

Details of short-term change in Chla concentration can be detected by geostationary orbit satellite
GF-4. As can be seen from Figure 7a(1,2), the Chla concentration, on 3 March 2017, is less than 14 µg/L
on the whole. At 11:12:34 s, the concentration of Chla was higher than 10 µg/L along the coast of
Liaodong Bay (the position shown in the red square in Figure 7(a3)) and Laizhou Bay (the position
shown in the blue square in Figure 7(a3)), and lower than 5 µg/L offshore of in Bohai Sea. After a few
minutes, the Chla concentration changed, showing in Figure 7(a3), with the decrease in the south
central part (the pink square in Figure 7(a3)) and increase in northeast part (red square in Figure 7(a3)).
Furthermore, the change of Chla concentration in one minute can also been detected (Figure 7(b1–b3)),
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and the obvious increases appear in the top of northeast part and southwest (the red, blue, pink and
green square in Figure 7(b3)) coastal line. However, on 6 September 2018 (Figure 7(c1–c3)), Chla
concentration decreased, in southwest coastal line (the blue square in Figure 7(c3)) and increase in
the northeast (the red square in Figure 7(c3)) and in the middle of the Bohai Sea (the pink square in
Figure 7(c3)) in one minute, dramatically.
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4. Discussion

4.1. Feasibility and Necessity of the Gaofen-4 (GF-4) PMS-1 Model in the Bohai Sea

The reflectivity of water body is far lower than that of other surface features, especially for a clear
water body. Except for strong reflection in the blue and green wave bands, the absorption is obvious in
the other optical wave range, and the absorption is more intense in the near-infrared wave band [15].

However, when the water is mixed with other substances, the reflection spectral curve of the water
will change due to the spectral interference of other substances. Chla has unique reflection spectral
characteristics, and the absorption peak appears at the wavelength of 440 nm and 678 nm, and when
the content of Chla is high, the absorption valley appears near the two wavelengths [11]. Due to
the weak absorption of Chla and carotene and the scattering effect of cells, reflection peaks appeared
near 550 nm. For water containing algae, its spectral curve has remarkable characteristics, presenting
obvious fluorescence peak within the range of 685–715 nm. The concentration of Chla will affect
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the location and value of the peak, since the change of Chla concentration in seawater can induce
the change of water spectral characteristics [54]. Based on the change of spectral reflectance value
obtained by the PMS sensor, the sensitivity of band 2–5 of PMS image to the concentration of Chla in
Bohai Sea waters was analyzed.

Prior studies found that, when constructing the model for inversion of Chla concentration with
characteristic bands, the accuracy of the model obtained from the combination of different bands is
higher than that of the model constituted by a single band [55]. Therefore, we applied band combination
to build the Chla inversion model.

GF-4 can g perform continuous observation during marine disasters, and obtain remote-sensing
information at high frequency and efficiency. Because of its high spatial resolution, GF-4 has great
potential for remote-sensing applications in the marine environment [56]. However, the existing
conventional Chla algorithms, such as OC3, OC4, and GSM, are not suitable for GF-4 band settings [28].
Therefore, a set of inversion algorithms suitable for GF-4 satellite remote-sensing data is urgently
needed. According to the reflectance value of the satellite data and the in situ Chla concentration
values, a regression model was established for GF-4 PMS.

The article combines in situ data and reflectance to analyze the correlation between single-band
and multi-band combinations respectively, and find the regression equation with the greatest correlation
and fit. The perform error analysis on the results confirmed the feasibility of empirical models. Prior
studies showed that the difference of Chla concentration was obvious at different locations in the study
area, with the higher being around 14 µg/L, appears in coastal areas, and the lower value being around
3 µg/L, appears in the distant sea and the low-value region is widely distributed [16,27]. Our modeled
results show a good consistency with prior studies. This is the first domestic use of GF-4 remote-sensing
data in the Bohai Sea to establish a suitable model for Chla concentration, which can provide effective
technical support for marine civilization construction and marine disaster investigation.

4.2. Factors Affecting Chla Concentration in the Bohai Sea

The change of Chla concentration in the Bohai sea is not only related to the environmental factors
such as seawater temperature, salinity, illumination and nutrient salts, but also related to the vertical
mixing of seawater caused by dynamic factors such as wind, flow field and tidal current [51]. The wind
field and flow field (such as upwelling), the input of terrestrial materials, the feeding of zooplankton
and other factors also have a direct influence on the spatial and temporal distribution of phytoplankton
Chla concentration [52].

Chla distribution is subject to ocean current imaging and moves with ocean currents [57]. Along
with the evolution of the coastal topography of the Bohai Sea, the cotidal time line located in the vicinity
of the Bohai Sea Strait has basically shifted to the east as a whole, and the cotidal time line in most
parts of the Bohai Sea has shifted counterclockwise [58]. The deflection of the line with tidal time
leads to the universal advance of the full diurnal equinox tidal time in the Bohai Sea. In most of
the sea areas, with no tidal point as the center along the direction of the wave rotation and propagation,
the advance of tidal time–time gradually increases [59]. The Bohai sea tidal currents have two types of
tidal currents, including regular semi-diurnal tidal currents and irregular semi-diurnal tidal currents,
which are regular semi-diurnal tidal current in Liaodong Bay, Bohai Bay and Laizhou Bay, and irregular
semi-diurnal tidal current in the central part of Bohai Sea [60]. The tides in the Bohai sea are basically
irregular semi-diurnal tides with a tidal cycle of about 6 h [61]. The tidal components M2 and K1 are
the most significant tidal components in the Bohai Sea. When the tide is high, the tide is southward;
when the tide is low, the tide is northwards, with an average velocity of 0.5–1.0 m/s [62]. When the tidal
wave moves, the distribution of Chla concentration in the sea surface layer will change.

Wind also affects ocean currents, inducing currents such as rip currents [63], thus causing changes
in Chla concentrations. The northern Bohai Sea residual current velocity is smaller than other coastal
current. The coastal current system not only presents certain circulation law in its own sea area, but
also interacts with coastal currents in other sea areas, which has important influence on the material
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transport among all sea areas. The hydrodynamic analysis of three bays in the north of the Bohai
Sea shows that the hydrodynamic force in the north of the Bohai Sea is mainly tidal current and
the residual current is weak [57]. Therefore, the transport of Chla in the Bohai Sea mainly depends
on the tidal current. In addition, the upwelling and cold vortex of wind often promote the growth of
phytoplankton after a significant wind. Cyclonic vorticity caused by wind increases the distribution of
surface Chla not only in time but also in space [64]. The short-term Chla change, such as changes in
Chla concentration within 10 minutes, is mainly caused by ocean currents and wind. The characteristics
of the average state of Chla concentration are that it is distributed in a band from the near shore to
the far sea and gradually decreases from the near shore to the offshore deep sea area.

5. Conclusions

The GF-4 satellite, a geosynchronous orbit optical satellite with a high resolution of 50 m, was
first applied to detect the Chla changing details in Bohai Sea. A newly built Chla inversion model
PMS-1 for the GF-4 PMS sensor was established. The new model PMS-1 can extract Chla in the Bohai
Sea well with the correlation coefficient R2 = 0.97, the total average relative error of 37.42% and
the root-mean-square error (RMSE) of 29.61%.

The high Chla concentration is mainly located in coastal areas, such as the top of Laizhou Bay,
Bohai Bay and Liaodong Bay, with the value being around 14 µg/ L. The low Chla concentration
is mainly located in the Bohai Strait and northern Yellow Sea, with the value being around 5 µg/L.
Generally, the mean value of Chla showed a general trend of being high in the offshore area, and low
in the distant sea.

Furthermore, by taking full advantage of the continuous observation of the geostationary orbit
satellite, GF-4 with a high resolution sensor PMS of 50 m, can effectively detect short-term change
(changes within 10 min) in Chla concentration. The changes mainly appear at the southwest and
northeast costal area as well as in the center of the Bohai Sea with the change value of around 3 µg/L.
This short-term change (changes within 10 minutes) in Chla concentration is mainly caused by ocean
currents and winds. Therefore, the advantage of GF-4 can be applied to make more subtle monitoring
of marine environmental factors.
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