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The improper management of plastic waste has become a silent killer in the 
marine ecosystem. The scientific evidence of plastic accumulated in marine 
biota and entering the food web have urged quick actions against the 
plastic pollution. The plastic detection algorithms developed using satellite 
images can proclaim emission, transportation, weathering and 
accumulation of plastic that is vital in eliminating them. This study 
developed an index to find floating marine harvested macro plastic within 
Sentinel 2 ACOLITE and Sen2Cor images. This index preserved the plastic 
information protected the plastic information and maximized the 
separation of them from the surrounding objects. The identified plastic 
pixels were analysed using scatter plots to discriminate plastic from non-
plastic objects and to observe the characteristics. The index and the scatter 
plot analysis detected the plastic pixels with bottle percentages more than 
or equal to 14%. The plastic bags and the fishing nets required around 50% 
pixel percentage to be detected. The plastic pixels with 100% plastic 
coverage were located as a separate cluster in the scatter plots. Therefore, 
the accurate detection of plastic pixels using ACOLITE and Sen2Cor images 
depends on the pixel plastic percentage and plastic coverage. The Sen2Cor 
images classified plastic pixels according to their pixel plastic percentage 
for two dates. However, this classification was not successful for other 
dates with aerosol, clouds and smooth sea surface conditions which made 
the plastic signal weak. The ACOLITE and Sen2Cor atmospheric corrections 
are not suitable for plastic detection when the plastic signal is weak. 
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1 Introduction  

Marine plastic is an emerging threat and decisions should 
be taken deliberately before the worst-case scenarios 
happen. Plastics tend to be accumulated almost 
everywhere in the ocean, including sea surface, water 
column, seafloor, shoreline, and marine organisms (Brignac 

et al., 2019; IUCN, 2021). In addition, plastic pollution is 
detrimental to marine biota, and cause severe injuries and 
deaths by ingesting or entangling of plastic debris (Barboza 
et al., 2020; Gregory, 2009; Thiel et al., 2018; Thushari and 
Senevirathna, 2020). Recent efforts of scientists have 
discovered the plastic in remote coral reefs and atolls. 
Diverse micro plastic polymers which exhibited the 
characteristics of long distance transportation were found 
near these reefs and atolls (Yu et al., 2022). Furthermore, 
recent studies suggest that the climate change and the 
marine plastic pollution are linked together. Greenhouse 
gas emission is considered as one of the primary causes of 
this link (Ford et al., 2022). Understanding the plastic cycle 
between emission and accumulation is vital to detect 
marine plastic. 

Many studies have been conducted on marine plastic 
pollution addressing emission (Lebreton et al., 2017; Meijer 
et al., 2021), transportation (Declerck et al., 2019; NOAA, 
2016), and accumulation (Eriksen et al., 2014; Lacerda et 
al., 2019). Furthermore, there are a number of attempts to 
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remotely detect these plastic (Davaasuren et al., 2018; 
Kikaki et al., 2020; Kremezi et al., 2021; Mifdal et al., 2021; 
Park et al., 2021; Tasseron et al., 2021). The remote 
detection of plastic in the marine environment using 
satellites is still in its developing stage. This study focused 
on remote detection of floating marine macro plastic using 
Sentinel 2 ACOLITE and Sen2Cor data. 

Scientists have already examined the possibilities of 
utilizing Sentinel 2 for macro plastic detection with 
different methods (Biermann et al., 2020; Themistocleous 
et al., 2020; Topouzelis et al., 2020; Topouzelis et al., 2019). 
The plastic was identified using Sentinel 2 ACOLITE and 
Sen2Cor corrected images from the plastic litter project 
(PLP) 2018 (Topouzelis et al., 2019). In addition, PLP 2019 
Sentinel 2 data were analysed for plastic using match 
filtering technique. This algorithm recognized plastic pixels 
with a minimum abundance fraction of 25% (Topouzelis et 
al., 2020). However, even though there were plastic 
detection techniques invented using Sentinel 2 ACOLITE 
and Sen2Cor images in the previous studies, still there 
were uncertainties cause by glint, clouds and aerosols in 
accurate identification of plastic. The Sentinel 2 data 
processed with several indices like floating debris index 
(FDI), normalized difference vegetation index (NDVI), and 
plastic index (PI) were the recent attempts of identifying 
plastic (Biermann et al., 2020; Themistocleous et al., 2020). 
Moshtaghi et al.(2021) found that the plastic detection 
method using FDI and NDVI proposed by Biermann et al. 
(2020) is depending highly on the type of plastic and the 
concentration of suspended sediments. 

This study investigated a method to extend the plastic 
detection while minimizing uncertainties caused by the 
methods used in previous studies. The aims of this study 
were; (1) building an index to detect marine debris 
including plastic in the satellite images (2) detecting plastic 
pixels with less than 25% of plastic pixel coverage, and (3) 
discriminating plastic from other non-plastic objects. 

2 Methodology 

2.1 Study Sites 

The Sentinel 2 images were collected for Mytilene (Greece) 
(Topouzelis et al., 2020; Topouzelis et al., 2019) and Cyprus 
(Themistocleous et al., 2020). These study sites had ocean 
harvested plastic data. The plastic patches were harvested 
in the Tasmakia beach, Greece, under the PLP 2018 and 
2019 projects. The dates of these data were 07/06/2018 

(AA), 18/04/2019 (BB), 03/05/2019 (CC), 18/05/2019 
(DD), 28/05/2019 (EE) and 07/06/2019 (FF). Here the 
notations of AA, BB, CC, DD, EE and FF are given for the 
dates of Mytilene data. 

The Fig. 1 indicates the names and the locations of the 
plastic pixels in Mytilene identified in this study. The ocean 
harvested plastic data for Cyprus was extracted on 
15/12/2018.  

2.2 Sentinel 2 Data Preparation 

The ACOLITE allows coastal and inland water processing 
for applications like sediment flows, oil spills, and 
chlorophyll levels. It contains two atmospheric correction 
methodologies using exponential extrapolation function 
and dark spectrum fitting (RBINS, 2020). The dark 
spectrum fitting was used as the correction methodology in 
this study. The ACOLITE version used was OLI lite Version 
20190326.0. The Sentinel 2 level 1C images were converted 
into level 2A images using the Sen2Cor v2.9 plugin. The 
default configuration of Sen2Cor v2.9 is similar to the L2A 
core product in Sentinel 2 satellite ground segment. 
Therefore, no further adjustment is required for acquiring 
L2A core products. In addition, this plugin is helpful in level 
2A products generation for historical Sentinel 2A images 
(ESA, 2020).  

The ACOLITE and Sen2Cor atmospheric corrections were 
used in this study as they were proven to be effective in 
detecting floating marine macro plastics. The ACOLITE 
corrected FDI and NDVI images classified mixed materials 
and identified plastics with 86% of accuracy. The ACOLITE 
corrected images, after processing with match filtering 
technique, identified plastic pixels with pixel percentage as 
low as 25% (Biermann et al., 2020; Topouzelis et al., 2020; 
Topouzelis et al., 2019). Therefore, the initial steps of 
plastic monitoring were taken with the images corrected 
with ACOLITE and Sen2Cor. This study further used them 
for testing the new index. All of these images were 
resampled into 10 m resolution before further processing. 
In addition, a land mask was applied to all images using a 
threshold applied to 1610 nm band. The 1610 nm band was 
selected to identify the land areas because the reflectance 
values between land and water varied significantly in a way 
that water contained lower values and land areas contained 
higher values.  

 

 

 

Fig. 1: The Mytilene plastic pixels’ names and their locations for different dates of (a) AA (b) BB (c) CC (d) DD (e) FF 
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2.3 Defining an Algorithm for Floating Plastic 

Researchers have been investigating algorithms to detect 
plastic using Sentinel 2 imagery. Recently, FDI combined 
with NDVI was used to identify plastic from other materials 
like sea water, sea weed, timber, sea foam and pumice 
(Biermann et al., 2020). Furthermore, normalized 
difference water index (NDWI), water ratio index (WRI), 
automated water extraction index (AWEI), modified 
normalization difference water index (MNDWI), 
normalization difference moisture index (NDMI), simple 
ratio (SR), PI, and reversed normalized difference 
vegetation index (RNDVI) were used to find the ocean 
harvested plastic in Cyprus (Themistocleous et al., 2020). 
Here we developed an index to find the debris pixels 
including plastic, while minimizing the limitations and 
uncertainties introduced in the above indexes. 

This index was developed using Sentinel 2 near-infrared 
(NIR), red, and short wave infrared (SWIR) bands as in  
Eq. 1. It was calculated as the difference between NIR 
reflectance and its baseline reflectance           ).The 

baseline reflectance was calculated as a linear interpolation 
between red and SWIR bands. The subtracted baseline of 
the index is expected to remove possible atmospheric 
disturbances. The maximum chlorophyll index (MCI), 
floating algae index (FAI), and FDI were also calculated by 
subtracting a baseline reflectance from the band which 
contained a relatively higher reflectance for the examined 
object (Alikas et al., 2010; Biermann et al., 2020; Hu, 2009). 
The baselines serve as atmospheric correction algorithms 
and sensitivity minimizing algorithms for surrounding 
objects. The formatting in this index is quite similar to FAI 
(Hu, 2009). FAI used the difference between 859 nm and a 
baseline between 645 nm and 1240 nm that is more 
sensitive to floating algae. In this study, we used the 
difference between Sentinel 2 NIR, and its baseline 
reflectance to maximize the plastic response in the image. 

 

                           

           
           
            

(                  )           

                        - 
     -     

      -     
(         -        )         (1) 

In this index, the     refers to the reflectance. The SWIR 

band (1613.7 nm/1610.4 nm) was used to correct the 
atmospheric errors. The strong absorption of light in NIR, 
and SWIR wavelength regions by relatively low turbid 
water surfaces was analysed by many water-related 
research (Martins et al., 2017; Pereira-Sandoval et al., 
2019; Ruddick et al., 2000; Shi and Wang, 2009). The SWIR 
was further recommended to atmospherically correct high 
turbid coastal water areas (Pereira-Sandoval et al., 2019; 
Shi and Wang, 2009). Because of this capability of 
addressing different turbidity levels, SWIR wavelength was 
considered as the most convenient to correct atmospheric 

effects in this study. In addition, it is observed that floating 
plastic has a higher reflectance in the Sentinel 2 NIR  
(832.8 nm/833 nm) wavelength (Themistocleous et al., 
2020; Topouzelis et al., 2019). The addition operation 
between NIR and red bands (664.6 nm/665 nm) could be 
converted to subtraction, such as in FAI, to remove 
majority of atmospheric disturbances in the image. 
However, it also removed the plastic information. Thus, the 
addition of red band reflectance to NIR reflectance served 
as a means to preserve plastic information. Therefore, this 
index as a whole protected the plastic information and 
maximized the separation of plastic pixels from the 
surrounding objects. 

As the next step, the scatter plots between index applied 
images and Sentinel 2 bands of band 5 (704.1 nm/ 
703.8 nm), band 8 (832.8 nm/833 nm) and band 9  
(945.1 nm/ 943.2 nm) were analysed to separate plastic 
pixels from other substances. The ‘X’ axis values, ‘Y’ axis 
values and the clustering of the debris pixels were also 
observed using these scatter plots. The reflectance of 
materials like wood, timber, white caps, sea foam and rock 
in band 5 is higher than most of the plastic types, and it was 
observed in recent research work done by scientists 
(Biermann et al., 2020; Moshtaghi et al., 2021). Therefore, 
this band was selected especially with the purpose of 
discriminating plastic from these materials which are 
abundant in the marine environment. In addition, the 
studies have revealed that there is an absorption feature of 
plastic around ~931 nm (Garaba and Dierssen, 2018; 
Moshtaghi et al., 2021) and for ocean harvested plastic, this 
is observed as ~960 nm (Garaba et al., 2021). The band 9, 
which has a wavelength around these absorption features, 
was selected in order to aid the identification of plastic. 
Moreover, most of the materials like sea foam, Sargassum 
and timber contains a higher reflectance in band 8 similar 
to plastic (Biermann et al., 2020). Thus, this band was 
selected with the purpose of comparative analysis of all 
materials. ACOLITE corrected images were analysed by 
using two scatter plots due to the unavailability of band 9.  

2.4 Evaluating the Derived Index with FDI and PI 

The FDI and PI are the two indexes developed to detect 
floating marine debris and marine plastic respectively. The 
results of the index developed in this study were tested 
with the results given by these indexes to observe the 
efficiency of using the derived index. 

3 Results  

3.1 Index Applied ACOLITE and Sen2Cor images 

Fig. 2 illustrates the results of index applied ACOLITE and 
Sen2Cor images of the study sites. The pixel names of PLP 
data used in this analysis are as Fig. 1 and pixel 
percentages/composition of different plastic materials for 
PLP 2018 and 2019 were referred from the original 
sources of Topouzelis et al. (2019) and Topouzelis et al. 
(2020). 
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Fig. 2: ACOLITE index applied (left) and Sen2Cor index 
applied(right) images that indicate the detected ocean 
harvested plastic patches of Mytilene for the dates of AA, 
BB, CC, DD, FF and Cyprus 

3.1.1 Plastic Pixel Identification of AA Index Applied 
ACOLITE and Sen2Cor Images  

The Fig. 2(a) indicated pixels of plastic bottles 34%, 29%, 
18%, fishing nets 55%, 12% and plastic bags 50% with 

higher reflectance values between 0.06 and 0.11. These 
pixels also had a good contrast with the background water 
pixels. The Fig. 2(b) delivered a similar result to Fig. 2(a).  

3.1.2 Plastic Pixel Identification of BB Index Applied 
ACOLITE and Sen2Cor Images  

Pixels of A2 (plastic bags 2%, plastic bottles 28%), A3 
(plastic bags 0%, plastic bottles 18%), and A5 (plastic bags 
18%, plastic bottles 15%) had reflectance values between 
0.08 and 0.099 in Fig. 2(c). In addition, all plastic pixels, 
including A4 (plastic bags 38%, plastic bottles 0%) and A6 
(plastic bags 0%, plastic bottles 1%), had a noticeable 
disparity between background water pixels. The Fig. 2(d) 
had reflectance values between 0.05 and 0.075 for A2, A3 
and A5 pixels. In contrast, the A4, A6 pixel reflectance was 
lower. 

3.1.3 Plastic Pixel Identification of CC Index Applied 
ACOLITE and Sen2Cor Images  

The C4 (plastic bags 0%, plastic bottles 14%), F2 (plastic 
bags 0%, plastic bottles 21%), E2 (plastic bags 0%, plastic 
bottles 27%) and E4 (no plastic) were indicated in Fig. 2(f). 
However, the contrast between plastic pixels and water 
pixels was considerably decreased compared to the other 
dates. It was very difficult to differentiate C4, F2, E4 and E2 
plastic pixels in Fig. 2(e) due to the conversion of the sea in 
to a rapidly changing heterogeneous background. 

3.1.4 Plastic Pixel Identification of DD Index Applied 
ACOLITE and Sen2Cor Images  

The Fig. 2(g) accentuated C4 pixel (plastic bottles 40%, 
plastic bags 0%). However, identifying this pixel was 
challenging due to the atmospheric disturbance (clouds or 
aerosols) nearby. The Fig. 2(h) showed similar results as 
Fig. 2(g).  

3.1.5 Plastic Pixel Identification of EE Index Applied 
ACOLITE and Sen2Cor Images  

It was not possible to identify the plastic pixels on EE image 
due to high sun glint present in the image.  

3.1.6 Plastic Pixel Identification of FF Index Applied 
ACOLITE and Sen2Cor Images  

The plastic pixels of C2 (plastic bags 1%, plastic bottles 
54%), C5 (plastic bags 11%, plastic bottles 4%), and three 
reed pixels of B2, B3, and B4 with 18%, 20% and 4% of 
reeds respectively were featured in the Fig. 2(i). The reeds 
pixels were indicated with a higher contrast compared to 
the plastic pixels. The Fig. 2(j) showed an equivalent result 
to the Fig. 2(i).  

3.1.7 Plastic Pixel Identification of Cyprus Index 
Applied ACOLITE and Sen2Cor Images  

Four plastic pixels were detected in Fig. 2(k) and (l) similar 
to the results indicated by WRI, NDVI, NDMI and RNDVI of 
Themistocleous et al. (2020). The results cannot be 
discussed further as we do not have the data related to 
pixel-wise plastic percentage. 
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3.2 Scatter Plot Analysis 

Fig. 3 indicates the scatter plot analysis of ACOLITE index 
applied images. The green colour is used to highlight the 
areas above the selected reference line. 

 

 

 

Fig. 3: ACOLITE Scatter plot analysis of (a-b) AA (c-d) BB (e-f) CC 
(g-h) DD (i-j) FF (k-l) Cyprus 

 

Fig. 4 indicates the scatter plot analysis of Sen2Cor index 
applied images. The green colour is used to highlight the 
areas above the selected reference line.  

3.2.1 AA 

The plastic pixels of plastic bottles 34%, 29%, 18%, fishing 
nets 12%, 55% and plastic bags 50% were detected by 
analysing the scatter plots of Fig. 3(a), (b) and Fig. 4(a). The 
Fig. 4(b) delivered a similar result to the Fig. 3(b). The  
Fig. 4(c) indicated different clusters of plastic pixels such as 
plastic bottles 34%, 29%, 18% and fishing nets 55% (red 
ellipse) as a one category, fishing nets 12%(blue circle) and 
plastic bags 50% (black circle) pixels as two other separate 
categories. 

3.2.2 BB 

The Fig. 3(c) and (d) differentiated A2, A3, A5 pixels from 
background water pixels. The Fig. 4(d), (e), (f) indicated A2, 
A3, A5, A4, and A6 pixels as a separate cluster from water 
pixels. In addition, they detached these five pixels into two 
groups of A2, A3, A5 (black ellipse) and A4, A6 (blue 
ellipse). This differentiation was well established in the  
Fig. 4(e) and (f). The Fig. 4(d), (e), (f) A2, A3 and A5 pixels 
with high pixel plastic percentage could be observed with a 
‘X’ axis value of 0.05 similar to Fig. 4(a), (b) and (c). 

3.2.3 CC 

The Fig. 3(e) and (f) did not successfully detect the plastic 
pixels. The E4 and C4 pixels were indicated as a separate 
cluster in the three scatter plots of Fig. 4(g), (h) and (i). The 
E2 pixel (black circle) is shown close to E4 and C4 only in 
the Fig. 4(h). However, this pixel was not detectable from 
the background water pixels using the reference line 
created to identify E4 and C4 at 0.048. The F2 pixel was not 
attained by Fig. 4(g), (h) and (i).  

3.2.4 DD 

The Fig. 3(g), (h) showed the C4 plastic pixel as a separate 
entity from the water cluster. This difference was 
conspicuous in the Fig. 3(h) due to the compact form of the 
water pixels. The C4 pixel could be extracted in the Fig. 4(j), 
(k) and (l) as it held the maximum 'X' value. However, the 
nearby pixels could easily cause uncertainty in the 
extraction. 

3.2.5 EE 

It was not possible to discriminate plastic pixels using 
scatter plot analysis of EE. The pixels did not show clusters, 
and instead they all were randomly spread. 

3.2.6 FF 

The plastic pixels could be identified in the Fig. 3(i) and (j) 
within close proximity to water and reed pixels (blue 
ellipse). Therefore, it was not easy to separate plastic and 
water. The same problem existed in the Sen2Cor image 
scatter plots. 



K.R.L. Pathira Arachchilage et al.                                                                Journal of Geospatial Surveying (2022) 2:2 

 

6 
 

 

 

Fig. 4: Sen2Cor Scatter plot analysis of (a-c) AA (d-f) BB (g-i) CC (j-l) DD (m-o) Cyprus 

 

3.2.7 Cyprus 

The ACOLITE (Fig. 3(k), (l)) and Sen2Cor index applied 
images (Fig. 4(m), (n), (o)) detected the four plastic pixels. 
However, both ACOLITE and Sen2Cor bands, and index 
applied images produced low values for plastic compared 
to the other dates. Most notably, Sen2Cor band 5 and  

band 9 images produced the least value of all which was 
0.0001. 

The index applied Sen2Cor images indicated two special 
situations on AA and BB. For example, Fig. 4(c) derived 
three categories of plastic pixels with pixel close to shore 
pixels, another pixel closer to water pixels, and another 
separate set of pixels with high percentage plastic bottles 
(34%, 29% and 18%) and fishing nets pixels (55%). The 
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pixel at the close range to the shore pixels was composed of 
low plastic percentage fishing nets pixels (12%), proving 
the dominance of bottom reflectance on fishing nets plastic 
patch as mentioned in Topouzelis et al. (2019). In addition, 
plastic bag pixel (50%) observed nearby the water cluster 
explained that the difference between the optical 
characteristics of water and plastic bags is negligible, and 
therefore, the percentage of plastic bottles in a pixel 
significantly contributed to the capability of plastic 
detection. All plastic bottle pixels detected in this study 
proved this fact further. The Fig. 3(c-d) and Fig. 4(d-f) 
identified A2, A3, and A5 pixels. The Fig. 4(d-f) divided all 
the plastic pixels into two clusters of plastic bottles 
percentage more than or equal to 15 and less than or equal 
to 1. Even though these results are convincing, they were 
not uniform for all the dates. The extraction of plastic pixels 
from CC, DD, EE and FF ACOLITE and Sen2Cor index 
applied images were more complicated and irreconcilable 
due to smooth sea surface condition, aerosol/clouds, high 
glint and inseparability between different substances 
(water and reeds) respectively. The plastic pixels on FF 
were located very close to the water pixels. The pixel 
plastic coverage can be a possible reason for this proximity. 
Because all the other identified pixels by ACOLITE or 
Sen2Cor images had 100% plastic coverage. However, on 
FF, the plastic coverage was 25% (Topouzelis et al., 2020). 
The Sen2Cor scatter plot analysis of CC was not able to 
detect the F2 and E2 pixels. This complication of the CC 
image could be due to its sea surface state and illumination. 
The sea appeared relatively smooth on CC image which 
highlighted the small variations between neighbouring 
pixels by any stretching. The AA and BB Sen2Cor image 
pixels with high plastic percentage could be identified with 
a common reference value of 0.05. However, this could not 
be done on CC, DD, EE and FF due to the environmental 
perturbations and low plastic coverage. The weak plastic 
signals on these days were reduced further by ACOLITE 
and Sen2Cor index applied images and caused substantial 
uncertainties in plastic detection. The Sen2Cor images 
performed well in identifying plastic pixels for BB and CC 
than ACOLITE images. 

4 Discussion 

4.1 Building the Index  

Indices like MCI, FAI, FDI and PI were studied thoroughly in 
deriving the index in this study (Alikas et al., 2010; 
Biermann et al., 2020; Hu, 2009; Themistocleous et al., 
2020). The MCI and FAI are used to detect floating algae. In 
contrast, the FDI and PI are used to discover marine plastic. 
All the study sites in this study were examined using FDI 
and PI to check whether they work for plastic detection. 
The Fig. 5 below shows the FDI and PI image results for 
Mytilene on AA. 

The application of FDI and PI on ACOLITE and Sen2Cor 
images did not identify all the plastic pixels similar to the 
index introduced in this study. The Fig. 5(a) indicates some 
of the plastic bottles, fishing nets and bags pixels. However, 
these pixels are difficult to identify with the rapidly 

changing heterogeneous water background and they are 
not contrasted from the water background similar to  
Fig. 2(a). The Fig. 5(b) also shows some plastic bottle 
pixels. However, many near shore pixels can cause 
uncertainty in identifying these plastic bottle pixels. 
Furthermore, the fishing nets and plastic bottle pixels are 
not indicated with a good contrast from the water 
background similar to Fig. 2(b). The plastic pixels are not 
identifiable in Fig. 5(c-d). The FDI or PI did not identify all 
the plastic pixels in these study sites, therefore this study 
investigated for a new index.  

Previous research have revealed the importance of using a 
combination of visible, NIR and SWIR bands in detecting 
marine plastic litter to avoid any misinterpretations cause 
by the colour of plastic, shape of plastic, form of plastic and 
the presence of other materials like seaweed, oil slicks, sun 
glint, sea foam, white caps and bubbles (Garaba et al., 2021; 
Moshtaghi et al., 2021). The Index in this study considers 
the high reflectance of NIR (832.8 nm/833 nm) for plastic 
objects (Themistocleous et al., 2020; Topouzelis et al., 
2019) and sensitivity of SWIR (1613.7 nm/1610.4 nm) 
band for atmospheric disturbances (Martins et al., 2017; 
Pereira-Sandoval et al., 2019; Ruddick et al., 2000; Shi and 
Wang, 2009). The red band (664.6 nm/665 nm) contains a 
considerable reflectance for plastic even though there is no 
reflectance peak such as for the NIR band. Therefore, the 
addition of red and NIR bands enhances the plastic 
information in the image.  

The introduced index found all the plastic pixels in 
ACOLITE and Sen2Cor (Fig. 2) in a comprehensive manner. 
It disclosed most of the plastic pixels deployed off Mytilene 
and Cyprus which contained plastic bottle percentages 
more than or equal 14%. This percentage below 25% is 
very important as it has surpassed a limitation of plastic 
pixel detection in Sentinel 2 images using spectra analysis 
(Topouzelis et al., 2020). The plastic bags and fishing nets 
pixels require pixel percentages of 50% and 55% 
respectively to be detected. However, further research 
should be done to confirm these percentages for fishing 
nets as it is tested one time in AA image. The difficulty of 
detecting plastic bag pixels which was studied by 
Topouzelis et al. (2020) is emphasized again in this 
analysis.  

4.2 Scatter Plot Analysis 

The discrimination of plastic and non-plastic pixels was 
expected to be done using the scatter plot analysis. 
However, it was not successful using the ACOLITE and 
Sen2Cor images. The disadvantage of using ACOLITE and 
Sen2Cor atmospheric corrections in plastic detection is that 
they further weaken the plastic signals that are influenced 
by different sea surface conditions, glint and 
clouds/aerosols. Also, the accurate detection of plastic 
pixels using ACOLITE and Sen2Cor images depends on the 
pixel plastic percentage and plastic coverage. The scatter 
plots cluster the plastic pixels and water pixels separately 
when the plastic coverage is 100%.  
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Fig. 5: Mytilene processed images of AA (a) ACOLITE FDI image (b) Sen2Cor FDI image (c) ACOLITE PI image (d) Sen2Cor PI image 

 

When comparing ACOLITE and Sen2Cor scatter plot 
results, the Sen2Cor scatter plots perform well in 
identifying and clustering the plastic pixels on all the dates.  

The scatter plots analysis was used by Biermann et al. 
(2020) for the automated classification of floating debris. 
The variables they used were FDI and NDVI and these 
indexes were calculated using the ACOLITE images. They 
identified different clusters for different types of marine 
debris using FDI and NDVI values. However, Moshtaghi et 
al. (2021) found that the method proposed by Biermann et 
al. (2020) is highly dependent on the type of plastic and the 
concentration of suspended sediments. Themistocleous et 
al. (2020) observed that the Sen2Cor atmospheric 
correction reduced the plastic reflectance for Cyprus. These 
studies indicate the dependence of ACOLITE and Sen2Cor 
single band values and index applied images on different 
external factors, and this study emphasized this further. 

5 Conclusion  

The index invented in this study discovered the marine 
harvested plastic using Sentinel 2 ACOLITE and Sen2Cor 
images. Both index and the scatter plot analysis detected 
plastic pixels with plastic bottle percentages more than or 
equal to 14%. The fishing nets and plastic bags required 
around 50% pixel percentage to be detected. The plastic 
pixels with 100% plastic coverage were located as a 
separate cluster from the water pixels in the scatter plot 
analysis. Therefore, factors like percentage of plastic within 
the pixel and total plastic coverage are influential factors 
for the accurate estimation of plastic pixels. Furthermore, 
ACOLITE and Sen2Cor atmospheric corrections are not 
suitable to detect plastic pixels when there are low plastic 
coverage and atmospheric disturbances such as aerosol, 
clouds and glint in the image. Because low plastic coverage 
and atmospheric disturbances make the plastic signal 
weak, and this weak signal is weakened further after 
applying ACOLITE or Sen2Cor. 
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