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Abstract

Fishery resources along China’s coasts have been declining. Could those decline be alleviated by deploying artificial reefs (ARs) in
suitable areas? This study investigates effects of a big project conducted in December 2007 that deployed ARs in the southwestern part
of Daya Bay. The ARs cover a total dimension of 966.10 � 2850.60 m2 and surface area of 91,500 m2. This study analyzed the spatial and
temporal variations of ecological factors, including Chlorophyll a concentrations (Chl-a), nutrients, attaching organisms and nekton
resources, on and around the ARs using both satellite (Moderate Resolution Imaging Spectroradiometer, MODIS) and in situ data.
Results showed that the potential affected area of ARs in Daya Bay reached a distance of 4.9 km in the water depth of 12.0–15.2 m.
In the study area, Chl-a level reached 2.93 mg m�2 during the post-AR period (2008–2012), that was higher than the pre-AR period
(2002–2007) (2.37 mg m�2). Nekton biomass increased by 4.66–16.22 times compared with that in the pre-AR survey, and the species
diversity increased by 15%–23%. This parallel trend suggested that ARs might have contribution to the increase in nekton biomass.
Long-term observations shall be conducted to understand the response of phytoplankton to ARs.
� 2015 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Daya Bay is located at the northern part of South China
Sea (SCS; Fig. 1A). The bay is shallow and semi-enclosed
between 22�30́–22�50́N and 114�30́–114�50́E. It encom-
passes an area of approximately 600 km2 with an irregular
http://dx.doi.org/10.1016/j.asr.2015.02.001
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coastline, and the bay area has more than 50 islands (Xu,
1989). Daya Bay was one of the major aquaculture areas
in Guangdong province because of the excellent water
quality and rich biological resources. However, economic
developments around the area has expanded rapidly in
the past decades; the local permanent population doubled,
and industries and establishments, such as nuclear power
plants (with thermal discharge), petrochemical, printing,
harbor, and tourism, expanded (Yu et al., 2007b, 2010).
Along with such economic expansions, the water quality
of Daya Bay has deteriorated, and the occurrence of harm-
ful algal bloom has become more frequent (Hao and Tang,
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Fig. 1. Research area. (A) Location of Daya Bay. (B) Daya Bay map with the location of the ARs. The small box with dashed lines indicates the area of
AR deployment. Box A shows the sample area of the satellite remote sensing data source. Black dots represent the eight survey stations. (C) Pictures of
ARs deployed in Daya Bay.
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2010; Hao et al., 2012; Song et al., 2009; Yu et al., 2007a).
Overfishing aggravates the decrease in fish stock, and
increasing bottom trawling operations accelerates seabed
desertification and destroys the natural habitats of marine
organisms in Daya Bay (Jia and Zhuang, 2009; Wang et al.,
2010). The number of fish species declined significantly,
and the dominant species shifted from high-value fishes
such as hairtail and pomfret in the 1980s, to low-value fish-
es such as sardine, anchovy, and juvenile porgy at present
times (Wang et al., 2010).

Therefore, immediate measures must be implemented to
protect the environment and increase the fishery resources
in Daya Bay. Artificial reefs (ARs) have been utilized for
different purposes in coastal management, including
increasing fish abundance and diversity (Tsumura et al.,
1999), recreational diving (Ditton et al., 1999), and trawl-
ing prevention (Relini, 2000). The entire AR program in
the Gulf of Mexico is driven by fisheries (Addis et al.,
2013), and the increase in fish around the ARs placed in
the Gulf of Mexico has been well recognized and
documented. Similarly, Fish Aggregating Devices (FAD)
are an ancestral fishing practice that are known to locally
increase local fish biomass through the attraction of fish.
However, the potential benefits of ARs are recognized.
Generally, ARs are poorly understood in terms of the
extent to which they change the ecological environment,
increase fishery resources, and whether they have a net eco-
logical effect.

Daya Bay provides an ideal case study for the assess-
ment of the ecological influence of ARs in bay waters,
because of its shallow water depth and semi-enclosed
shape. The government of Guangdong Province designated
Daya Bay as an ecological demonstration zone for ARs in
2007. Since 2000, local government agencies have invested
80 million RMB to establish 100 AR areas in Guangdong
coastal waters (Wang et al., 2008, 2009a). By December
2007, 2202 AR units of cement concrete and timber with
a dimension of 3 � 3 m2 have been deployed in Yangmei
Cove, which is located in the southwestern part of Daya
Bay (Figs. 1B and C).

Marine phytoplankton is a critical indicator of eco-
logical conditions, due to its ecological function in primary
production (Chen, 2000). Chlorophyll a concentration
(Chl-a) has been evaluated as a useful indicator of phyto-
plankton biomass (Hao et al., 2012; Yu et al., 2007a).
Satellite data have likewise been utilized for Daya Bay eco-
logical studies (Chen et al., 2003; Tang et al., 2003; Yu
et al., 2007a, 2007b, 2010). The products of Moderate
Resolution Imaging Spectroradiometer (MODIS) onboard
aqua satellites can provide information about Chl-a on
spatial and seasonal variations, which the limited number
of ship stations and surveys cannot provide (Tang et al.,
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2005; Zhao et al., 2008). The ecological processes and pos-
sible effects from the placement of ARs in a bay ecosystem
are analyzed in the present study with a particular focus on
fishery resources, based on satellite remote sensing data
and in situ investigations.

In December 2007, a big project on deploying ARs with
a total dimension of 966.10 � 2850.60 m2 and surface area
of 91,500 m2 in the southwestern part of Daya Bay, China
was conducted. Could this project alleviate the decline of
fishery resources and whether ARs have ecological effects?
To answer this question, this study analyzed the ecological
processes and possible effects resulting from the deploy-
ment of ARs in a bay ecosystem.

2. Materials and methods

2.1. Study area

The study area, including AR groups and AR potential
impact area, covered an area of 4.9 km2 with 12.0–15.2 m
water depth. The AR groups were piled by AR modules
through particular combinations. The total dimension of
the AR groups was 966.10 � 2850.60 m2, and the total sur-
face area was 91,500 m2, which was calculated according to
Wang et al. (2009b). The average index of nekton biomass
based on wild capture was 154 kg km�2 in April 2007 (pre-
AR period). The main species that were caught included
Gobiidae (Chaeturichthys stigmatias, Chaeturichthys stig-
matias), Sparidae (Sparus macrocephalus, Black porgy),
Apogonidae (Apogon kiensis, Band Tail Black Spot Cardi-
nalfish), and Sciaenidae (Argyrosomus argentatus, White
croaker).

2.2. MODIS-derived Chl-a data

MODIS is a key instrument onboard the Earth
Observing System (EOS) AM (Terra) and EOS PM (Aqua)
satellites that are parts of NASA’s EOS. Aqua’s orbit pass-
es south to north over the equator in the afternoon, views
the Earth’s surface every 1–2 d, and acquires data in 36
spectral bands or groups of wavelengths.

In this study, MODIS-derived Chl-a data were used to
investigate the changes in Chl a concentration. Spatial
resolution satellite data of 1 km � 1 km were used because
the AR groups (966.10 � 2850.60 m2) were larger than
1 km2 and their potential affected area reached to several
kilometers. A total of 3845 daily Chl-a images
(1 km � 1 km spatial resolution) were obtained from July
2002 to December 2012 (http://oceancolor.gsfc.nasa.gov/
). ASCII format data were derived from MODIS Chl-a
products for the AR area (of box A in Fig. 1B) by using
the MATLAB 7.0.1 software package. These data were
then processed into monthly values, and linear regression
analysis was performed. To remove the season signal,
monthly Chl-a anomalies were also calculated based on
the monthly Chl-a minus the monthly mean Chl-a that
was averaged for 11 years (2002–2012) (Fig. 2). Finally,
the increase in Chl-a after the deployment of ARs was cal-
culated based on the average of each month from 2008 to
2012 minus the average of the same month from 2002 to
2007 and compared with the monthly average Chl-a over
the 2002–2007 period. To understand Chl-a distribution
in the study area, Chl-a data sets were processed into
monthly average images by using Grid Analysis and Dis-
play System (GrADS) for two periods, namely, pre-AR
(2002–2007) and post-AR (2008–2012) (Fig. 3).

2.3. In Situ observations

Eight survey stations were equally spaced in the study
area. Station 5 was at the center of the AR groups. Four
of these eight stations were set on the boundary of the
AR groups, and they were at a distance of 1.5 km from
the center of AR groups (indicated using the numbers 1,
2, 3, and 4 in Fig. 1B). The other four were set at a distance
of 0, 1.3, 1.6, and 4.9 km (indicated using the numbers 5, 6,
7, and 8 in Fig. 1B) from the center of the AR groups. The
water depth at each station is shown in Table 1. The time
and purpose of each field investigation are shown in
Table 2. Research teams from South China Sea Fisheries
Research Institute, Chinese Academy of Fishery Sciences
conducted studies on the overall ecology and environment
of the study area (Jia et al., 2011).

All in situ data obtained through a series of research cruis-
es were measured following the national standard methods
(SOC, 2007). Water temperature varied seasonally, because
Daya Bay is a shallow bay with a mean water depth of 11 m,
and that homogeneously thermocline was not observed
throughout the water column (Yin et al., 2006; Yu et al.,
2010). Water samples were collected from the surface layer
at less than 5 m, the middle layer at 5–10 m, and the bottom
layer at more than 10 m. Sampling depth was measured in si-

tu by using a YSI 6600 multi-parameter water quality moni-
tor. Chl-a was tested via the fluorescence
spectrophotometric method after acetone (90% v/v) was
extracted in the dark for 24 h at 4 �C. The nutrients utilized
in this study include inorganic nitrogen (TIN = NO3-
AN + NO2AN + NH4AN, molL�1) and phosphate (PO4-
AP, molL�1). The TIN/P ratio was calculated using the
following formula: TIN (molL�1)/PO4AP (molL�1).

Nekton investigations were conducted through bottom
trawling around the AR groups area (Stations 1, 2, 3,
and 4) to indicate the nekton resource status in the study
area and diving survey in the artificial reef’s modules where
bottom trawling cannot be conducted. The nekton stock
biomass (in weight) was calculated via the swept area
method (Gunderson, 1993; Zhan, 1995). The species diver-
sity of nekton in the study area was calculated in terms of
nekton species (in number), which was used to divide the
study area (4.9 km2). The increase in the percentage of
the nekton species diversity was calculated with the follow-
ing equation, [(NiAN1)/N1] � 100%, where the Ni is the
species diversity during the post-AR period, and N1 is
the species diversity in April 2007 (pre-AR period).

http://oceancolor.gsfc.nasa.gov/
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Table 1
Water depth at each station.

Station 1 2 3 4 5 6 7 8

Water depth (unit: m) 12.0 12.6 13.6 13.1 13.5 15.2 14.3 12.8
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A scuba diver sampled the organisms that were attached
on the reef modules with a quadrat of 0.01 m2, because the
thinnest part of AR modules was 0.2 m. The organisms
attached on the AR modules were sampled at three water
depths: the upper layer at 6 m, the middle layer at 8 m,
and the lower layer at 10 m. The data from the three layers
were averaged to determine the overall status of the organ-
isms attached on the AR modules.
2.4. Computational fluid dynamics numerical simulation

The flow field around the AR units was simulated using
a computational fluid dynamics (CFD) numerical
simulation software called ANSYS FLUENT (http://
www.ansys.com/). The numerical model was based on the
law of conservation of mass and momentum. Seawater
was set as an incompressible fluid, and the governing equa-
tions were continuous and were Navier–Stokes equations
(Landau and Lifshitz, 1999). This CFD has a wide
application in fluid mechanics and can be compared to
the experiments (Baloch, et al., 1995; Zhang and Ko, 1996).

3. Results

3.1. Variations in annual Chl-a from 2002–2012

The time series of the monthly mean Chl-a from July
2002 to December 2012 (Fig. 2) shows that the minimum
and maximum Chl-a were 1.22 (April 2006) and

http://www.ansys.com/
http://www.ansys.com/


Table 2
Survey time and purpose.

Survey time Chl-a, nutrients,
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Pre-AR period 2007 April
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Variations in the flow fields around ARs by CFD

J. Yu et al. / Advances in Space Research 55 (2015) 2315–2324 2319
3.61 mg m�3 (November 2006), respectively. The linear
regression analysis performed on monthly Chl-a in the
pre-AR period (2002–2007) revealed an ascending trend
at a rate of 0.012 mg m�3 per month (Fig. 2A). During
the post-AR period (2008–2012), Chl-a was at a relatively
high level with most Chl-a being higher than 2.0 mg m�3

(Fig. 2B). The average values of monthly Chl-a were
2.37 mg m�2 during the pre-AR period and 2.93 mg m�2

during the post-AR period, respectively.
We also compared the monthly Chl-a anomalies in the

pre-AR (Fig. 2C) and post-AR (Fig. 2D) periods. During
the pre-AR period (2002–2007), Chl-a anomalies ranged
from �1.21 (June 2004) to 1.93 (August 2006, Fig. 2C).
During the post-AR period (2008–2012), Chl-a anomalies
ranged from �0.72 (June 2010) to 1.04 (April 2012,
Fig. 2D). For the entire observation period (2002–2012),
the trend identified via linear regression analysis based on
Chl-a anomalies shifted from positive to negative. The
slope of linear regression decreased from 0.012 (2002–
2007) to �0.002 (2008–2012) (Figs. 2C and 2D).
0.2 0.16 0.12 0.08 0.02
Velocity m/s

Fig. 5. Numerical simulation of computational fluid dynamics to show the
variations in the flow fields around ARs.
3.2. Increase in seasonal Chl-a in post-AR period

The seasonal variations in Chl-a in the pre-AR (2002–
2007) and post-AR (2008–2012) periods were compared
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from 2002–2007 and 2008–2012 showed a systematic
increase in Chl-a during the 2008–2012 period with Chl-a
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2008 to 2012). For the entire observation period, Chl-a
increased by 10.79%–27.06% in 2008–2012 compared with
that in 2002–2007 (Fig. 4). The largest percentage of
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to November.
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of the pre-AR survey for the surface layer and the bottom
layer. Chl-a decreased gradually with increasing distance
from the central part of the ARs (Figs. 6A and B). Chl-a
in the post-AR surveys were higher than that in the pre-
AR survey in each station, particularly for the bottom
Chl-a (Fig. 6A). The DIN/P ratio was low before AR
deployment (pre-AR survey), came close to the Redfield
value, and then achieved standard values of 10–20 after
AR deployment (Fig. 6B). During the post-AR surveys,
the surface and bottom DIN/P ratios were close and
remained at a constant range in each station (Fig. 6B).
Moreover, the DIN/P ratio at the center of the ARs
(Station 5) was closer to the Redfield value than those from
farther stations (Stations 6, 7, and 8; Fig. 6B).

3.4. Attaching organisms and nekton resources in the AR

water

After the deployment of ARs in December 2007, the
attaching organisms on the ARs were investigated five
times in April, July, September, October, and December
2008 (Fig. 6C). The species diversity of attaching organisms
appeared to be changing seasonally, with the variation of
their sizes and biomass. The species (in number) of the
attaching organisms varied from 26 (December) to 45
(September) in different seasons, and the density ranged
from 747.98 ind m�2 (September) to 311.25 ind m�2 (July).
The biomass (in wet weight) of the attaching organisms
decreased from spring (April) to summer (July) and
gradually increased before reaching the maximum of
540.32 g m�2 in winter (December).
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The nekton biomass (in weight) and the species diversity
in the study area increased after the ARs were deployed in
December 2007 (Fig. 6D). In the pre-AR survey (April
2007), the nekton biomass was 154.04 kg km�2, and the
species diversity in the study area was 14.9 species km�2.
In the post-AR surveys, the biomass increased by 4.66–
16.22 times that of the pre-AR survey and varied from
871.80 kg km�2 (May 2008) to 2652.99 kg km�2 (May
2009). The species diversity increased by 15%–23% and
ranged from 17.14 (March 2008) to 18.37 (May 2009)
species km�2 (Fig. 6D).

3.5. Flow field change around the ARs

The ANSYS FLUENT model predicted that after the
ARs are deployed to the seabed, the flow field changes
when water current passes the ARs. Significant local
upwelling and eddy flow fields generated at the front and
back of the ARs, respectively. A geometric shaded area,
which was a shadow region generated from the AR mod-
ules (Liu et al., 2013), was distributed within and around
the reef (Fig. 5).

4. Discussion

4.1. Increase in Chl-a and variation in nutrients associated

with ARs

In shallow waters, large ARs are expected to mimic
natural upwelling and carry up nutrients into the water col-
umn, which may result in phytoplankton growth. In this
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study, variations in Chl-a suggested variations in the
primary production of the study area. In terms of time,
variations in Chl-a from 2002–2007 (pre-AR period)
showed a different trend than during the 2008–2012
(post-AR period). Given human developments, the uses
and degradations described in the introduction and the pri-
mary productivity prior to AR deployment were responses
to natural variability and human activities around the bay
(Figs. 2 and 3). Monthly Chl-a increased during the pre-
AR period (2002–2007) and maintained a high level during
the post-AR period (2008–2012) (Figs. 2A and B). The
monthly Chl-a anomalies decreased slightly (Figs. 2C and
D). These results showed that phytoplankton concentra-
tion was slightly higher after AR development. High
Chl-a was observed in the study area from December to
August (Figs. 3A, B, and C) and spread to the entire bay
from September to November (Fig. 3D). This finding is
in agreement with the result of the comparison of monthly
Chl-a (Fig. 4). In terms of space, the increase in bottom
Chl-a in the center of the ARs (Station 5 in Fig. 1B) was
larger than that in the farther stations (Stations 6, 7 and
8 in Fig. 1B) (Fig. 6A). Both results indicated that Chl-a
variations during the pre- and post-AR periods may be
associated with ARs.

The upwelling effects caused by the ARs extended to
both vertical and horizontal directions. The potentially
affected distance of ARs reached to 4.9 km in waters of
12.0–15.2 m depth in Daya Bay (Figs. 6A and B). This
influencing distance varied seasonally and reached the
maximum in September (Fig. 3). Chl-a in Daya Bay was
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influenced by multiple factors, such as thermal plume from
nuclear power plants, aquaculture, industries, and etc.
(Hao et al., 2012; Yu et al., 2007a, 2007b, 2010). Long-term
observation shall be conducted to understand the phyto-
plankton response to ARs.

After the deployment of ARs, the nutrition changed and
become close to the Redfield value, which was more appro-
priate for phytoplankton growth, especially in the central
part of ARs (Station 5 in Figs. 1A, 6A, and B). This finding
indicated that the deployment of ARs partly caused the
nutrition variations in the study area, which changed the
direction and velocity of flow in the study area (Fig. 5;
Falcão et al., 2009).

4.2. Ecological effects of ARs in Daya Bay

The ARs in Daya Bay modified the pre-existent bottom
and pelagic ecosystems through physical (flow-field modifi-
cation and increased surface area) and ecological (nutrients
variation and increased reef biota) processes (Fig. 7).
Upwelling and eddy flow fields that were generated around
the ARs enhanced the nutrients in the water column and
consequently enhanced phytoplankton growth, which
might have attracted fish (Figs. 5, 7B and D). Chl-a in
the AR-deployed area was higher than that in the adjacent
water (Figs. 2–4, 6A, and 7B), which suggests an increase in
phytoplankton biomass in the study area. This phytoplank-
ton biomass aggregation around the ARs promoted nutri-
ent regeneration, which traps drifting organic materials
and favors the accumulation of marine organisms and
Nutrients 

Plankton

Benthos

ARs during the post-AR period 
C Attaching organisms on the

Ecological process

l-a map 
eriod 

Nutrients variation
Increased reef biota
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oto of seabed during the pre-AR period. (B) Monthly average Chl-a image
s with attaching organisms and fish. (D) Physical process during the post-
process during the post-AR period: nutrients variation and increased reef
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planktons (Figs. 6 and 7; Falcão et al., 2007; Kirke, 2003).
Given the modification of flow fields and the increase in
surface area in AR modules, nutrients varied and reef biota
(such as plankton and attaching organisms) accumulated
because of the flow-field modification and increase in sur-
face area in the AR modules, and a habitat that was rich
in bait for fish was eventually developed (Fig. 7). After five
months in April 2008, the attaching organisms on ARs
multiplied. The species diversity increased from 0 to 41,
and the biomass (in wet weight) increased from 0 g m�2

to 383.08 g m�2. Species diversity and density reached their
2008 maximum in September, although the biomass fluctu-
ated slightly until December 2008 where the biomass
reached the maximum (Fig. 6C). This AR biota may be a
response to the increasing primary production, because
monthly Chl-a also reached the peak value in the same
period (September to November 2008, see Figs. 3 and 4).
The increase in species diversity and biomass of attaching
organisms was also an improvement in the fishery
resources. This phenomenon was used as a case study by
observing the increase in reef biota in the Daya Bay waters
for three years and comparing with one set of pre-deploy-
ment data in April 2007. Further research on the correla-
tion between specific organisms with specific fish species
would be conducted to understand the ecological effects
of ARs.
4.3. Fish attraction and reproduction in the AR water

This study showed that ARs enhanced local nekton
biomass and diversity in Daya Bay, which is located in
the northern South China Sea. This enhancement was
induced through fish attraction, and several studies have
also indicated that this enhancement was through repro-
duction (Fowler and Booth, 2012; McGowan et al.,
2014). The ARs provided additional habitats that
improved the environmental carrying capacity, the species
diversity, and the biomass of artificial reef biota (Booth
and Fowler, 2013; Pickering and Whitmarsh, 1997). With
a hollow structure, ARs can expand the surface area for
the growth of attaching organisms. AR waters can devel-
op a bait-abundant field, which will attract migratory fish
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Fig. 8. Fish-enhancement mechanism in the study area. (1) Experiment ind
variations in flow fields, nutrients, phytoplankton, and zooplankton and the in
and attaching organisms on the ARs and increase in fish species and biomass
and facilitate larval retention (Figs. 6 and 7). Additional
surface area with increased reef pile size helps attain the
maximum fish biomass (Jan et al., 2003). Considering that
the natural habitat has disappeared in Daya Bay (Jia and
Zhuang, 2009; Wang et al., 2010), ARs can provide a suit-
able habitat and spawning ground for larval and juvenile
fish (Figs. 6C and 7C). In Daya Bay, ARs had significant
attraction effects on Plectorhynchus cinctus, Lutjanus

argentimaculatus, and Sebastiscus marmoratus. The attrac-
tion effects were connected to available rooms and shade
spaces (Zhou et al., 2010, 2011, 2012).

In addition to the attraction effect, ARs can allow the
production of new fish biomass and ongoing recruitment
through reproduction. Relevant studies observed that egg
clusters, pairings, and egg laying occur at the ARs
(Pickering and Whitmarsh, 1997). The biomass and species
diversity of nekton in August 2008 were relatively high and
are in agreement with Chl-a variations (Fig. 3C), which
indicates that the ARs may provide additional environ-
mental carrying capacity.

A diagram is presented in Fig. 8 to model the biota
enhancement processes that ARs generate. After the
deployment of ARs, the flow fields around the ARs
changed, the nutrients were then enhanced, and the
TIN/P ratio increased. The nutrients fertilized the phyto-
plankton in the mixed layer with an increase in Chl-a,
which enhanced the primary production in the AR
water. Zooplankton later fed on phytoplanktons, and
planktivores consumed both. Subsequently, attaching
organism and fish fed on these plankitivores. Both feed-
ings enhanced fish biomass and species in the AR water
(Fig. 8). Therefore, ARs have important functions in the
enhancement and recruitment of coastal fishery. The diet
of the fish species sampled in the study area and the
implantation of their biomass increase will be explored
in further studies.
5. Summary

This study, as the first time, investigate ecological effects
of ARs in China using both satellite remote sensing and
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shipboard monitoring data. Combining the two data sets
provide important information for reliability checks to
assess the ecological effects of ARs.

ARs exhibit ecological effects in both vertical and
horizontal directions, reaching 4.9 km distance in the water
depth of 12.0–15.2 m in Daya Bay. Three years after the
deployment of ARs, the nekton biomass increased by
4.66–16.22 times of that in the pre-AR survey, and the spe-
cies diversity of nekton in the study area also increased by
15%–23%. These phenomena are related to variations in
nutrients, increase in Chl-a, and occurrences of attaching
organisms after AR deployment. It is necessary to conduct
long-term observations to understand ARs ecological
response and to identify suitable reference sites.
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