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This study analysed the spatio-temporal distributions of chlorophyll-a (chl-a) in the

Indian Ocean during the 2004 South Asian tsunami and the effects of four variables

(sea surface temperature, normalized water-leaving radiance, rainfall and wind speed)

on chl-a distributions during the tsunami, using satellite data and spatial models. The

results showed considerable variations in the spatio-temporal distributions of chl-a,

and the effects of the four variables on chl-a around the tsunami. The results revealed

that sea surface temperature and rainfall had negative effects on chl-a, while normal-

ized water-leaving radiance and wind speed had positive effects. The effects of all the

four explanatory variables were significant (positive or negative) before the tsunami.

Except normalized water-leaving radiance, the other three variables all showed certain

degrees of weakened effects on chl-a after the tsunami, which suggested the physical

disturbance of the tsunami on the effects of these variables on chl-a distribution.

1. Introduction

The Mw ¼ 9.3 earthquake, centred off the west coast of northern Sumatra (3.316�N,

95.854�E) on 26 December 2004, produced the largest trans-oceanic tsunami ever

recorded (Stein and Okal 2005). This tsunami was an unprecedented natural disaster

that caused massive damage to the marine and terrestrial ecosystems and the envir-

onment along the coastal area (Liu et al. 2005, UNEP 2005). The physical disturbance
is an important factor structuring marine ecosystems (Sousa 1979, Krishnakutty

2006, Tang et al. 2009) and will have a long-lasting impact on the biotic communities

and their habitats.

Earthquakes can induce sudden changes in ocean–atmosphere interactions and the

consequences of these – the anomalous behaviour of numerous oceanic and atmo-

spheric processes – are believed to show precursory signals (Dey and Singh 2003, Dey

et al. 2004). One such process is the change in distribution of chlorophyll-a (chl-a) on

the ocean surface (Tang et al. 2006c). Chl-a results from the growth of phytoplankton
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and is an indicator of primary productivity in marine ecosystems. The spatial and

temporal distribution of chl-a is correlated closely with many oceanic and atmo-

spheric factors, e.g. sea surface temperature (SST), spatial location (offshore dis-

tance), wind (velocity and direction), rainfall, suspended sediment concentration

and nutrients (Tang et al. 2004, 2006a, 2006b). Tang et al. (2006c) first investigated
the effect of the South Asian tsunami on marine phytoplankton in the Indian Ocean.

They found an increase in the chl-a level along the east coast of India and around Sri

Lanka, prior to the tsunami, and a chl-a bloom spread afterwards along the drift of

the current. They also revealed an inverse relationship between chl-a and SST.

Other studies on the effect of the 2004 tsunami include using satellite data to

investigate the changes in SST and chl-a. Singh et al. (2007) found anomalous changes

in SST before and after the earthquake. By studying SST and the integrated water

vapour following the event on 26 December 2004, Agarwal et al. (2007) found that the
overall air–sea interaction underwent a change but recovered slowly to its normal

behaviour afterwards. Changes in suspended sediments in the eastern Indian Ocean

associated with the 2004 tsunami were also observed (Yan and Tang 2008). By

comparing Modis Aqua satellite images, Tan et al. (2007) concluded that chl-a at

the upwelling area at the northern Malacca Straits did not exhibit any significant

changes in relation to tsunami waves. Modelling the satellite Sea-viewing Wide Field-

of-view Sensor (SeaWiFS) data indicated that the effects of wind speed and rainfall on

suspended sediment concentration weakened immediately around the tsunami event
(Zhang et al. 2009).

These studies have significantly advanced our understanding of the effect of tsu-

nami on chl-a and SST. A question that remains to be explored is how chl-a was

distributed before and after the tsunami and what factors in addition to SST would

have affected its distribution. In this study, we used satellite data before and after the

tsunami to model the spatial and temporal dynamics of chl-a in terms of SST,

normalized water-leaving radiance (NWR), wind speed (WIN) and rainfall (RAF).

An important feature of our models is that it accounts for the spatial autocorrelation
in the distribution of chl-a. Our objectives are to find out whether the spatial dis-

tribution of chl-a, in the severe tsunami-affected ocean surface area, remained the

same before and after the tsunami, and what oceanic and atmospheric factors affected

the dynamics in chl-a.

2. Study area and materials

2.1 Study area

The study area is located at 5�S–11�N, 74–98�E in the eastern Indian Ocean (figure 1(a)

box E), which covers the earthquake epicentre and was influenced most strongly by the

tsunami. The study area (excluding land) is subdivided into 1528 grids (with resolution

0.5� � 0.5�).

2.2 Satellite data

Data in seven temporal periods (conveniently called ‘week’ hereafter) were obtained

(table 1). Three ‘weeks’ occurred before the week of the tsunami and three after. Each

‘week’ has eight days, except the tsunami week (26–31 December, week 4), which was

arbitrarily determined by the satellite. For comparison of the chl-a distribution
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Table 1. The first-order spatial autocorrelation in chl-a among the adjacent neighbours
as measured by Moran’s I.

Date
(Week)

2–9
December
2004 (1)

10–17
December

(2)

18–25
December

(3)

26–31
December

(4)

1–8
January
2005 (5)

9–16
January

(6)

17–24
January

(7)

Moran’s
I (chl-a)

0.65 0.74 0.62 0.70 0.59 0.75 0.71

The correlations are highly significant, with P-value for each I smaller than 0.0001. Week 4 is
the tsunami week.

E p i c e n t r e

S r i L a n k a

I n d i a

E

I n d i a n      O c e a n

S u m a t r a

M a l a y s i a

T h a i l a n d
B a y  o f  B e n g a l

(a)

(e)

0
30
60
90
120
150
180
210
240
270

1.7
3.4
5.1
6.8

8.5

E pE pE pE pE pE pE pE pE pE pE p i c c cc c c c e ne ne ne ne nn t rt rtt r eeeeee 10.2

11.9
13.6
15.3
17
18.7
20.4

0.1
0.2
0.3
0.4

0.5
0.6
0.7

0.8

0.9

1
1.1
1.2

0.08
0.1
0.2
0.3
0.4

0.5
0.6

0.7
1

2.5

10

30

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

10

74°E 82°E 90°E 98°E

5°S

1°S

3°N

7°N

11°N

(b)

(c) (d) 

(f) 

Figure 1. (a) Box E shows the study area (5�S–11�N, 74–98�E). The epicentre is marked with a
red star. (b)–(f) Distributions of chl-a (mg m-3), SST (�C), NWR (mW cm-2 mm-1 sr-1), RAF
(mm) and WIN (m s-1) in the study area in the tsunami week (26–31 December 2004),
respectively.
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between the tsunami and non-tsunami periods, another six weeks of data (three before

the seven-week tsunami period and three after) were analysed later.

The chl-a and NWR data, observed from SeaWiFS, at 0.5� resolution and at 555

nm eight-day (level 3), were obtained from the Ocean Color Time Series Project

(http://reason.gsfc.nasa.gov/Giovanni/). Accumulated eight-day RAF data, at 0.5�

resolution and observed from the satellite (Daily) Tropical Rainfall Measuring

Mission (TRMM) (3B42 V6), were obtained via TRMM Online Visualization and

Analysis System (TOVAS; http://disc2.nascom.nasa.gov/Giovanni/tovas/). Eight-day

SST data (level 3), at 9 km resolution, were collected by the satellite Moderate

Resolution Imaging Spectroradiometer (MODIS) (Aqua). Wind vector daily data

(level 3), at 0.25� resolution, were observed from satellite QuickScat. SST and wind

vector data were obtained from the Jet Propulsion Laboratory (http://poet.jpl.nasa.-

gov/). Level-3 data used in this study are high-level data of research quality. In order
to analyse the data at the same scale, we aggregated the 9 km resolution SST data up

to 0.5� resolution. We averaged wind vector data for each of the seven weeks, from 2

December 2004 to 24 January 2005, along longitude and latitude directions. We then

aggregated the wind vector from 0.25� to 0.5� resolution.

Before modelling chl-a in relation to the four explanatory variables (SST, NWR,

RAF and WIN), an exploratory data analysis was undertaken to ensure the quality of

the data. A very small portion of ‘outliers’ in chl-a, NWR, RAF, SST and WIN were

identified. These data were excluded in the modelling. We also omitted those locations
where data are missing.

3. Models and methods

Due to the flow of sea water or other reasons, the values of chl-a at two neighbouring

locations (or grids) are not independent but tend to be similar, i.e. the values of chl-a

at neighbouring locations are positively correlated. The spatial autocorrelation makes

the ordinary regression methods invalid. To overcome the problem, we applied the

spatial autoregressive models that are often used in spatial statistics (Anselin 1988).
Spatial models, accounting for the effect of autocorrelation, are widely used in

geographical research (Griffith 1987, Odland 1987), spatial econometrics (Anselin

1988, Anselin and Florax 1995), public health (Waller and Gotway 2004) and ecology

(Borcadrd and Legendre 2002, Keitt et al. 2002).

3.1 Measuring spatial autocorrelation of chl-a

A commonly used spatial autocorrelation statistic is Moran’s I, defined as:

I ¼ z0Wz=z0z; (1)

where z is n � 1 vector. It is expressed as deviations from the mean, i.e. zi ¼ yi � �y,

i¼ 1 . . . n, where yi is the chl-a value at the ith location (or grid). z0 is the transpose of z
and W is n � n spatial weight matrix determined by the spatial configuration of the n

locations as:

Wij ¼ Cij

,Xj¼n

j¼1

Cij i; j ¼ 1 ::: n; (2)

where Cij ¼ 1 if locations i and j are immediate vertical and horizontal neighbours

and 0 otherwise. The matrix (Cij)n�n ¼ C is also called a connectivity (or
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configuration) matrix (Griffith 1987). Spatial weight matrix W, calculated by equa-

tion (2), is called row-standardized.

Moran’s I shows an asymptotic normal distribution (Cliff and Ord 1981). It has an

expected value of –[1/(n – 1)]. It is close to zero for large n. If the values of chl-a are

independent among spatial locations, the calculated value of I should equal this
expectation. I varies between -1 and þ1; the closer the values are to �1, the stronger

are the spatial autocorrelations. Values of I that exceed –[1/(n - 1)] indicate positive

spatial autocorrelation in which neighbouring values tend to be similar. Values below

the expectation indicate negative spatial autocorrelation in which neighbouring

values tend to be dissimilar.

3.2 Spatial models

The general spatial process model is (Anselin 1988):

y ¼ rW1yþ Xb þ e
e ¼ lW2eþ m m,N 0; s2In

� �
; (3)

where y is dependent variable (chl-a), r is the coefficient of spatially lagged depen-

dent variable W1y, and l is the coefficient in spatial autoregressive structure for the

error term. W1 and W2 are n� n spatial weight matrices, associated respectively with a

spatial autoregressive process in dependent variable y and in error term e. b is k � 1

vector of parameters associated with explanatory variables X (n � k matrix). In this

study, k ¼ 4 is the number of explanatory variables. The noise m is normally

distributed.

For r ¼ 0, l ¼ 0, model (3) becomes an ordinary linear regression model (OLM),
with no spatial effects:

y ¼ Xb þ e: (4)

For l ¼ 0, the model becomes a mixed regressive-spatial autoregressive model:

y ¼ rW1yþ Xb þ e (5)

Because of the component of spatially lagged variable W1y, this model is called a

spatial lag model (SLM).

For r ¼ 0, model (3) becomes a mixed regressive-spatial autoregressive model with

a spatially autocorrelated error term e.

y ¼ Xbþ e
e ¼ lW2eþ m:

(6)

Because the spatial dependence is related to error term e, it is called a spatial error

model (SEM).

The properties of the tests (introduced in the next section) are sensitive to the

choice of the spatial weight matrix (Anselin and Rey 1991). It is often more
convenient in practice to assume the spatial weight matrices W, W1 and W2 to be

the same (Anselin et al. 1996). In this study, the spatial weight matrices W, W1

and W2 were all determined and calculated by equation (2). Alternatively,

higher-order configurations and distance-weighted matrices may be used

(Anselin 1988).
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3.3 Estimation methods

In order to understand the tsunami influence on chl-a, we first used Moran’s I to

examine the spatial autocorrelation in chl-a and its possible temporal change before

and after the tsunami. We then modelled chl-a (y) in relation to the explanatory

variables X ¼ [SST, NWR, log (RAFþ1), WIN], using the models progressively

introduced earlier, from OLM, SLM to SEM. Based on an exploratory data analysis,

the logarithm of RAF was identified to have a linear relationship with chl-a, thus,

log(RAFþ1) was used to avoid zeroes in the log.

In autoregressive model (3), W1chl-a is just like an explanatory variable. Although
the SeaWiFS retrieval of chlorophyll-a includes NWR (555) as an input, in order to

investigate the mixed effects of NWR and other variables on chl-a, NWR could be

also used as an explanatory variable.

Normal approximation was used to test the significance of Moran’s I values for chl-

a. For model SLM (5), it is well known that the ordinary least squares estimator (OLS)

is biased as the observations of chl-a are not independent. For model SEM (6), OLS is

unbiased but inefficient due to the effects of spatial autocorrelation in the residuals

(Anselin 1988).
For general spatial process model (3), we can use the maximum likelihood

approach (ML) to estimate the parameters. The unknown parameters are: q ¼ [r, b,

l, s2], the log-likelihood function is obtained as:

LðqÞ ¼ �ðn=2Þ log p� ðn=2Þ log s2 þ log Bj j þ log Aj j � v0v
�

2s2; (7)

where A ¼ I – rW1, B ¼ I – lW2, v0v ¼ (Ay – Xb)0B0B(Ay – Xb) and |I – rW1| . 0,

|I – lW2| . 0.

In order to decide which regression model, among the three (OLM, SLM and

SEM), is the best choice, we first tested Moran’s I values of the residuals in

OLM. Moran’s I is useful for indicating the presence of spatial dependence. But it
cannot be used to discriminate SLM and SEM if both models have effectively

modelled autocorrelation. The Lagrange multiplier tests (LM) are the most appro-

priate for solving this problem (Anselin and Rey 1991). The LM test is asymptotically

distributed as w2
q; q is the number of degrees of freedom. LM has four statistics:

LMlag, LMerr, RLMlag and RLMerr. Each of the statistics has a complicated

mathematical form that is not given here; we refer readers to Anselin et al. (1996)

for details. Our notation follows the R package ‘spdep’ (http://www.r-project.org),

which was used here for estimating the above models, but it is slightly different from
the notation of Anselin et al. (1996) with LMlag as their LMf, LMerr as LMc,

RLMlag as LMf* and RLMerr as LMc*. The LM tests are described as follows. It

is clear from the description that RLMlag and RLMerr are the robust versions of

LMlag and LMerr, respectively.

1. LMlag is used to test the spatial lag dependence in the absence of spatial error
dependence (l ¼ 0) under the null hypothesis H0: r ¼ 0.

2. RLMlag is used to test the spatial lag dependence in the possible presence of

spatial error dependence (l ¼ 0 or l � 0) under the null hypothesis H0: r ¼ 0.

3. LMerr is used to test the spatial error dependence in the absence of spatial lag

dependence (r ¼ 0) under the null hypothesis H0: l ¼ 0.

4. RLMerr is used to test the spatial error dependence in the possible presence of

spatial lag dependence (r ¼ 0 or r � 0) under the null hypothesis H0: l ¼ 0.
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The decision rule (Anselin and Florax 1995, Anselin et al. 1996) is as follows.

1. If both LMlag and LMerr tests are not significant, the OLM model is the final

choice.

2. If LMlag is significant (leading to the rejection of H0: r ¼ 0) but LMerr is not,
the SLM is the proper model and is estimated by RLMlag.

3. If LMerr is significant (leading to the rejection of H0: l¼ 0) while LMlag is not,

then SEM is the better model and is estimated by RLMerr.

4. In the case when both LMlag and LMerr are significant, if LMlag is more

significant than LMerr, SLM is taken as the final model and is estimated by

RLMlag; while, if LMerr is more significant than LMlag, then SEM is the final

choice and is estimated by RLMerr.

We then used the Wald test to test for the significance of parameters in the above

models. The Wald statistic is also asymptotically distributed as w2
q. All the above

computations and model estimations were implemented using the statistical software R.

4. Results

Visual inspection on the distributions of chl-a, SST, NWR, RAF and WIN for the

tsunami week (figure 1(b)–(f) reveals a possible correlation between SST, NWR and

chl-a. There is strong positive autocorrelation in the spatial distribution of chl-a

among neighbouring locations, and the level of correlation remains consistent before

and after the tsunami, as indicated by the high values of Moran’s I (table 1). The high-

order spatial correlograms of chl-a are shown in figure 2. The autocorrelation

decreases gradually as spatial lags increase for all seven weeks. The distance of
positive correlation varies considerably among the weeks from 12 lags in Week 5 to

44 lags in Week 2. There is a noticeable wavy shape in the correlogram for the tsunami

week (Week 4) and Week 2. This kind of fluctuation was not observed in another six

non-tsunami weeks (figure 3). We suggest that these variations are either caused by

the tsunami waves or may be an incipient signal of the tsunami. The correlograms in

Weeks 1, 6 and 7 in figure 2 are very similar to that in figure 3 and decrease

consistently. They are considered to be the ‘normal’ correlograms with little effect

from the tsunami.
The temporal correlation in chl-a among the seven weeks is measured by Pearson’s

product-moment correlation. The results show a strong correlation in chl-a between

any two weeks (table 2). Although there is a general trend of decrease in correlation

over time (along each row of table 2), this pattern is not consistent. The largest

correlation coefficient of 0.71 occurred between the tsunami week (Week 4) and

Week 6, while the smallest correlation of 0.39 occurred between Weeks 3 and 7.

From the comparison of the overall goodness-of-fit of the three regression models

(OLM, SLM and SEM) (table 3), it is evident that the values of Moran’s I quickly
decrease from OLM to SLM to SEM. The very high values (between 0.36 and 0.62) of

Moran’s I for OLM’s residuals indicate a high spatial autocorrelation in OLM

residuals. Moran’s I for the SEM residuals are much smaller (between -0.003 and

-0.17). Although the significance tests show that Moran’s I for some of the weeks still

differs significantly from zero, the comparison of the correlograms between figures 2

and 4 indicates that the SEM model has effectively captured the spatial structure of

chl-a distribution. This result is also verified by the Lagrange multiplier test (table 3).
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According to the decision rule described in Section 3.3, both LMlag and LMerr are

highly significant for every week (table 3). We then went on to estimate the SLM and

SEM models with RLMlag and RLMerr, respectively. Results show that RLMerr is

highly significant for every week, while RLMlag has much larger P-values. This

indicates the SEM model is the best for modelling chl-a in relation to the four

explanatory variables. We then use the SEM to model the distribution of chl-a and

analyse the temporal effects of the four covariates on chl-a.
SST showed a significantly negative correlation with chl-a, except in Week 5,

immediately after the tsunami week (table 4). The mean value of SST reached the

minimum in Week 5 (figure 5). NWR and chl-a were always significantly and posi-

tively correlated both before and after the tsunami. Except in Week 7, RAF had a

strong negative effect on chl-a (table 4); RAF reached a minimum value in Week 7

(a) (b)

(c) (d)

(e) (f)

(g)
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Figure 2. Spatial correlograms for chl-a along spatial lag. One spatial lag is 0.5�. The x-axis is
the number of spatial lags; the y-axis is the Moran’s I value of chl-a.
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(figure 5). WIN had a very strong positive influence on chl-a before the tsunami.

However, this influence decreased dramatically after the tsunami (table 4). WIN did

not show an effect on chl-a for the two weeks (Weeks 5, 6) immediately after the

tsunami week.

Table 2. Pearson’s product-moment correlation coefficient of chl-a between weeks.

chl-a Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Week 1 0.69 0.50 0.59 0.51 0.64 0.50
Week 2 0.68 0.69 0.63 0.68 0.60
Week 3 0.61 0.52 0.63 0.39
Week 4 0.65 0.71 0.55
Week 5 0.67 0.49
Week 6 0.69

P-values for all the correlation coefficients are smaller than 0.001. Weeks 1, 2 . . . 7
are in the order of the seven weeks shown in table 1. Week 4 is the tsunami week.
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Figure 3. Spatial correlograms for chl-a along spatial lag: three weeks before and three weeks
after the seven weeks shown in figure 2. The x-axis is the number of spatial lags; the y-axis is the
Moran’s I value of chl-a.
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5. Discussion

As a measure of phytoplankton biomass, chl-a concentration is important for indicat-

ing the changing conditions in the marine ecosystem. Chlorophyll-a values derived

from ocean colour sensors have been used as a relative measure of phytoplankton

abundance and biomass in the ocean (Martin 2004).

5.1 Spatio-temporal distributions of chl-a

Results indicate a significant spatio-temporal autocorrelation in chl-a during the

tsunami period (tables 1 and 2, figure 2). It is obvious that the spatial correlation

gradually decreases as spatial lags increase (figure 2), while the attenuation of tem-

poral correlation is smaller (table 2). There is some evidence of fluctuation (or

‘anomalous’ behaviour) in the spatial correlation in the weeks around the tsunami
(figure 2), particularly in Week 2. The wavy correlograms disappeared after the

tsunami week. This kind of fluctuation was not found in the other six non-tsunami

weeks (figure 3). These abnormal fluctuations should be related to the tsunami event.

The significant increase in spatial correlation distance in chl-a distribution (figure

2(b)), before the tsunami event, indicated that the flow of sea water among neighbour-

ing locations (or grids) was enhanced markedly. Further study is needed to confirm if

this phenomenon is a precursory signal of the occurrence of a tsunami.

5.2 The effects of environmental factors on chl-a

Tang et al. (2006c) found an inverse relationship between SST and chl-a in the sea

surface of the Indian Ocean during the 2004 tsunami. The spatial modelling of this
study (table 4) allows us to quantify the effect of SST and shows it has a significant

negative influence on chl-a, except in Week 5, immediately after the tsunami week.

The results indicate that the tsunami event might have reduced the negative effect of

SST on chl-a. The NWR has a significant positive effect on chl-a both after and before

the tsunami. This is the only relationship that was unaffected by the tsunami. RAF

has a notably negative influence on chl-a, except in Week 7. WIN has a significant

positive effect on chl-a before the tsunami, but this effect disappeared after the

Table 3. Tests for the goodness-of-fit of the ordinary linear model (OLM) and the two spatial
autoregressive models (SLM and SEM).

Week 1 2 3 4 5 6 7

I for OLM residual 0.51 0.62 0.53 0.55 0.36 0.59 0.59
I for SLM residual 0.07* 0.10 0.06* 0.15 0.14* 0.13 0.03**

I for SEM residual -0.08* -0.13 -0.08* -0.07* -0.003** -0.17 -0.11

Lagrange multiplier test to compare SLM and SEM models

LMerr 419.72 518.33 338.38 409.05 81.89 505.48 805.16
LMlag 344.23 386.74 299.01 300.74 60.19 348.19 713.29
RLMerr 78.13 135.30 48.81 111.82 25.14 165.18 110.41
RLMlag 2.64** 3.70** 9.45* 3.51** 3.45** 7.89* 18.54

*0.001 , P-value , 0.05.
**P-value . 0.05.
P-value , 0.001 for others (no asterisk). Weeks 1, 2 . . . 7 are in the order of the seven weeks
shown in table 1.

4588 X. Zhang et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
Z
h
a
n
g
,
 
X
i
n
F
e
n
g
]
 
A
t
:
 
1
2
:
3
5
 
6
 
O
c
t
o
b
e
r
 
2
0
1
0



tsunami (Weeks 5, 6). More interestingly, the importance of RAF and WIN to chl-a

appeared alternately, from Weeks 5 to 7 (table 4). This may be caused by the counter-

active effects of RAF (negative) and WIN (positive) on chl-a. Except for NWR, the

variables SST, WIN and RAF all showed some degree of weakened effect on chl-a

after the tsunami. This may suggest that the tsunami affects the distributions of chl-a

and other variables.
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Figure 4. Spatial correlograms for SEM residuals. One spatial lag is 0.5�. The x-axis is the
number of spatial lags; the y-axis is the Moran’s I value of SEM residuals.
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5.3 Responses of environmental factors to the tsunami

Around the occurrence of the tsunami, the five marine environmental factors (chl-a,

SST, NWR, RAF and WIN) varied differently (figure 5). The changing trends in chl-
a, NWR and WIN were very similar (figure 5(a), (c), (e)). These changes were also

reflected by the results (table 4) in which both NWR and WIN have positive effects on
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Figure 5. Variations in the means of chl-a (mg m-3), SST (�C), NWR (mW cm-2um-1sr-1),
RAF (mm) and WIN (m s-1) for the seven weeks. Weeks 1, 2 . . . 7 are in the order of the seven
weeks shown in table 1. Week 4 is the tsunami week (dashed line).
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chl-a. The variation of chl-a before 8 January is consistent with the observation of

Singh et al. (2007). Tang et al. (2006c) found an increase in chl-a level along the east
coast of India and around Sri Lanka prior to the tsunami. In the present study, the

mean of chl-a in the whole study area reached its maximum value (0.1833 mg m-3) in

Week 5, immediately after the tsunami week (figure 5(a)). SST reached its minimum

value (28.6�C) in Week 5, immediately after the tsunami week (figure 5(b)). At the

same time, RAF and WIN increased significantly and reached their maximum values

(RAF 57.86 mm and WIN 6.03 m s-1) in Week 5 (figure 5(d), (e)). The considerable

increase in RAF and WIN in Week 5 may be responsible for the significant decrease in

SST in the same week. The tsunami event might have played an important role in the
sudden changes of marine climate (SST, RAF and WIN) immediately after the

tsunami, which might have markedly disturbed the variations in chl-a.

6. Conclusions

Our analyses showed that there was a strong spatial and temporal correlation in the

distribution of chl-a. The tsunami might have caused the fluctuation of spatial
autocorrelation in the distributions of chl-a. The significant increase in spatial corre-

lation distance in chl-a, before the tsunami event, indicated an enhancement in the

flow of sea water among neighbouring locations (or grids). The spatial error model

revealed that SST and RAF had negative effects on chl-a, while NWR and WIN had

positive effects. The effects of all the four variables were significant (positive or

negative) before the occurrence of the tsunami. It is also clear that, except NWR,

the effects of SST, WIN and RAF on chl-a disappeared or weakened immediately

after the tsunami. There were sudden changes in the marine climate (SST, RAF and
WIN) immediately after the 2004 South Asian tsunami, which would have markedly

disturbed the distribution of chl-a.

The spatial models and the procedure of model estimation used in this study should

be of wide application to model other ecological processes in both marine and

terrestrial systems as ecological data are often spatially correlated.
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